**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Predictive Control of Fast Unstable and Nonminimum-phase Nonlinear Systems

Résumé

Predictive Control of Unstable Nonminimum-phase Systems K. Guemghar, B. Srinivasan, Ph. Mullhaupt, D. Bonvin ´ Institut d’Automatique, Ecole Polytechnique F´d´rale de Lausanne, ee CH-1015 Lausanne, Switzerland. Predictive control is a very eﬀective approach for tackling problems with constraints and nonlinear dynamics, especially when the analytical computation of the control law is diﬃcult. Standard predictive control involves predicting the system behavior over a prediction horizon and calculating the input that minimizes a criterion expressing the system behavior in the future. Only the ﬁrst part of the computed input is applied to the system, and this procedure is repeated with the advent of each new measurement. This methodology is widely used in the process industry where system dynamics are sufﬁciently slow to permit its implementation. In contrast, applications of predictive control to fast unstable dynamic systems are rather limited. Apart from computational considerations, a fundamental limitation arises from the accuracy of that prediction, which can be quite poor due to accumulation of numerical errors if the prediction horizon is large. In this paper, an upper bound on the prediction horizon based on the location of the unstable pole(s) of the linearized system will be provided. The problem becomes more acute when nonminimum-phase systems are considered. Nonminimum phase implies that the system starts in a direction opposite to its reference (inverse response). To control such systems, it is reasonable to predict the maneuvers, thus making predictive control a natural strategy. However, a large prediction horizon is required since it is necessary to look beyond the inverse response. In this context, a lower bound on the prediction horizon based on the location of the unstable zero(s) of the linearized system will be provided. The two bounds mentioned above may lead to the situation where there exist no value of the prediction horizon that can stabilize a given unstable nonmiminum-phase system. For such a case, a combination of tools from diﬀerential geometry and predictive control is proposed in this paper. The envisaged procedure has a cascade structure and is outlined below: 1. Using the input-output linearization technique, the nonlinear system is transformed into a linear subsystem and internal dynamics. However, since the original nonlinear system is nonminimum-phase, the internal dynamics are unstable. 2. The linear subsystem is made arbitrarily fast by using a stabilizing high-gain linear feedback (inner-loop). 3. A predictive control scheme is then used to stabilize the slow internal dynamics (outerloop) by manipulating the reference of the inner loop. The stability of the proposed procedure is analyzed using a singular perturbation approach. The results will be illustrated in simulation on a system consisting of an inverted pendulum on a cart. 1

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (28)

Dynamique des systèmes

La dynamique des systèmes fait partie de la théorie des systèmes. C'est une approche pour comprendre le comportement des systèmes complexes dans le temps en les représentant par des systèmes dynamiq

Commande prédictive

La commande prédictive (ou compensation ou correction anticipatrice) est une technique de commande avancée de l’automatique. Elle a pour objectif de commander des systèmes industriels complexes. Le pr

Nonlinear system

In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interes

Publications associées (41)

Chargement

Chargement

Chargement

Dominique Bonvin, Kahina Guemghar, Philippe Müllhaupt

Abstract Predictive control and feedback linearization are two popular approaches for the control of nonlinear systems. In this paper, a cascade combination of the two metho ds is proposed, where control based on input- output feedback linearization forms the inner lo op, and predictive control the outer lo op. With this scheme, predictive control is applied to the internal dynamics instead of the system dynamics. The proposed cascade scheme is advantageous for unstable minimum-phase systems and for unstable nonminimum-phase systems with slower internal dynamics compared to the system dynamics. A stability analysis of the global scheme is provided based on singular perturbation theory. The approach is illustrated via the simulation of an inverted pendulum on a cart system.

2005We study finite horizon optimal control where the controller is subject to sensor-information constraints, that is, each input has access to a fixed subset of states at all times. In particular, we consider linear systems affected by exogenous disturbances with state and input constraints. We establish the class of sensor-information structures that allows for the formulation of this optimization problem as a convex program. In the literature, Quadratic Invariance (QI) is a well-established result that is applicable to the infinite horizon unconstrained case. We show that, despite state and inputs constraints being enforced, QI results can be naturally adapted to our problem. To this end, we highlight and exploit the connection between Youla parametrization and disturbance-feedback policies. Additionally, we provide graph-theoretic visual insight which is consistent with Partially Nested (PN) interpretations.

Many real-world systems are intrinsically nonlinear. This thesis proposes various algorithms for designing control laws for input-affine single-input nonlinear systems. These algorithms, which are based on the concept of quotients used in nonlinear control design, can break down a single-input system into cascade of smaller subsystems of reduced dimension. These subsystems are well defined for feedback-linearizable systems. However, approximations are required to handle non-feedback-linearizable systems. The method proceeds iteratively and consists of two stages. During the forward stage, an equivalence relationship is defined to isolate the states that are not directly affected by the input, which reduces the dimension of the system. The resulting system is an input-affine single-input system controlled by a pseudo-input which represents a degree of freedom in the algorithm. The pseudo-input is a complementary state required to complete the diffeomorphism. This procedure is repeated (n − 1) times to give a one-dimensional system, where n is the dimension of the system. The backward stage begins with the one-dimensional system obtained at the end of the forward stage. It iteratively builds the control law required to stabilize the system. At every iteration, a desired profile of the pseudo-input is computed. In this next iteration, this desired profile is used to define an error that is driven asymptotically to zero using an appropriate control law. The quotient method is implemented through two algorithms, with and without diffeomorphism. The algorithm with diffeomorphism clearly depicts the dimension reduction at every iteration and provides a clear insight into the method. In this algorithm, a diffeomorphism is synthesized in order to obtain the normal form of the input vector field. The pseudo-input is the last coordinate of the new coordinate system. A normal projection is used to reduce the dimension of the system. For the algorithm to proceed without any approximation, it is essential that the last coordinate appears linearly in the projection of the transformed drift vector field. Necessary and sufficient conditions to achieve linearity in the last coordinate are given. Having the pseudo-input appearing linearly enables to represent the projected system as an input-affine system. Hence, the whole procedure can be repeated (n−1) times so as to obtain a one-dimensional system. In the second algorithm, a projection function based on the input vector field is defined that imitates both operators, the push forward operater and the normal projection operator of the previous algorithm. Due to the lack of an actual diffeomorphism, there is no apparent dimension reduction. Moreover, it is not directly possible to separate the drift vector field from the input vector field in the projected system. To overcome this obstacle, a bracket is defined that commutes with the projection function. This bracket provides the input vector field of the projected system. This enables the algorithm to proceed by repeating this procedure (n−1) times. As compared with the algorithm with diffeomorphism, the computational effort is reduced. The mathematical tools required to implement this algorithm are presented. A nice feature of these algorithms is the possibility to use the degrees of freedom to overcome singularities. This characteristic is demonstrated through a field-controlled DC motor. Furthermore, the algorithm also provides a way of approximating a non-feedback-linearizable system by a feedback-linearizable one. This has been demonstrated in the cases of the inverted pendulum and the acrobot. On the other hand, the algorithm without diffeomorphism has been demonstrated on the ball-on-a-wheel system. The quotient method can also be implemented whenever a simulation platform is available, that is when the differential equations for the system are not available in standard form. This is accomplished numerically by computing the required diffeomorphism based on the data available from the simulation platform. Two versions of the numerical algorithm are presented. One version leads to faster computations but uses approximation at various steps. The second version has better accuracy but requires considerably more computational time.