Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Neural networks have become indispensable for a wide range of applications, but they suffer from high computational- and memory-requirements, requiring optimizations from the algorithmic description of the network to the hardware implementation. Moreover, the high rate of innovation in machine learning makes it important that hardware implementations provide a high level of programmability to support current and future requirements of neural networks. In this work, we present a flexible hardware accelerator for neural networks, called Lupulus, supporting various methods for scheduling and mapping of operations onto the accelerator. Lupulus was implemented in a 28nm FD-SOI technology and demonstrates a peak performance of 380GOPS/GHz with latencies of 21.4 ms and 183.6 ms for the convolutional layers of AlexNet and VGG-16, respectively.
Colin Neil Jones, Yingzhao Lian, Loris Di Natale, Jicheng Shi, Emilio Maddalena
Volkan Cevher, Thomas Michaelsen Pethick, Wanyun Xie