Orientation (graph theory)In graph theory, an orientation of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph. A directed graph is called an oriented graph if none of its pairs of vertices is linked by two symmetric edges. Among directed graphs, the oriented graphs are the ones that have no 2-cycles (that is at most one of (x, y) and (y, x) may be arrows of the graph). A tournament is an orientation of a complete graph. A polytree is an orientation of an undirected tree.
Magnitude de momentL'échelle de magnitude de moment est une des échelles logarithmiques qui mesurent la magnitude d'un séisme, c'est-à-dire la « taille » d'un séisme proportionnelle à l'énergie sismique dégagée. Centrée sur les basses fréquences des ondes sismiques, elle quantifie précisément l'énergie émise par le séisme. Elle ne présente pas de saturation pour les plus grands événements, dont la magnitude peut être sous-évaluée par d'autres échelles, faussant ainsi les dispositifs d'alerte rapide essentiels pour la protection des populations.
Asymptotic theory (statistics)In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞. In practice, a limit evaluation is considered to be approximately valid for large finite sample sizes too. Most statistical problems begin with a dataset of size n.
Échelle de Richtervignette|droite|Représentation d'une onde sismique. Historiquement, l'échelle de Richter a été l'une des premières tentatives d'évaluer numériquement l'intensité des tremblements de terre, grâce à la magnitude de Richter qui mesure l'énergie sismique radiée (énergie des ondes sismiques) lors du séisme. Imprécise et dépassée, elle a depuis été remplacée par des échelles plus précises permettant de mesurer la magnitude des séismes. L'éponyme de l’échelle de Richter est le sismologue américain Charles Francis Richter (-) qui l'a proposée en .
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Échelle de Mercallivignette|La ville chilienne de Valdivia après le tremblement de terre de 1960, le plus important jamais enregistré (9,5 MW). Il a atteint une intensité de XII sur l'échelle de Mercalli. L'échelle de Mercalli est une échelle de mesure de l'intensité d'un séisme, qui se fonde sur l'observation des effets et des conséquences du séisme en un lieu donné. Il est important de distinguer l'intensité d'un séisme de sa magnitude, laquelle mesure l'énergie libérée par le séisme à son foyer.
Seismic intensity scalesSeismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking. Intensity scales are based on the observed effects of the shaking, such as the degree to which people or animals were alarmed, and the extent and severity of damage to different kinds of structures or natural features.
Théorème central limitethumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.
Inférence causaleL'inférence causale est le processus par lequel on peut établir une relation de causalité entre un élément et ses effets. C'est un champ de recherche à la croisée des statistiques, de l'économétrie, de l'épidémiologie, de la méthodologie politique et de l'intelligence artificielle. En 1920, Sewall Wright développe la première path analysis. Cette analyse graphique des relations de causalité entre les variables constitue selon Judea Pearl un travail pionnier dans l'inférence causale.
Modèle causal de Neyman-RubinLe modèle causal de Neyman-Rubin (ou modèle à résultats potentiels, en anglais potential outcome model) est un cadre de pensée permettant d'identifier statistiquement l'effet causal d'une variable sur une autre. La première version du modèle a été proposée par Jerzy Neyman en 1923 dans son mémoire de maîtrise. Le modèle a ensuite été généralisé par Donald Rubin dans un article intitulé « ». Le nom du modèle a été donné par Paul Holland dans un article de 1986 intitulé « ». Expérience naturelle Méthode des