Paramètre de formevignette|La loi Gamma est régie par deux paramètres de formes : k et θ. Un changement d'un de ces paramètres ne change pas seulement la position ou l'échelle de la distribution, mais également sa forme. Dans la théorie des probabilités et en statistiques, un paramètre de forme est un type de paramètre régissant une famille paramétrique de lois de probabilité. Un paramètre de forme est un paramètre d'une loi de probabilité qui n'est pas un paramètre affine, donc ni un paramètre de position ni un paramètre d'échelle.
Statistical parameterIn statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
PluieLa pluie est un phénomène naturel par lequel des gouttes d'eau tombent des nuages vers le sol. Il s'agit d'une des formes les plus communes de précipitations sur Terre. Son rôle est prépondérant dans le cycle de l'eau. Elle prend nombre de formes allant de la pluie légère au déluge, de l'averse à la pluie continue, de fines gouttelettes à de très grosses. Elle est parfois mêlée de neige, de grêlons ou verglaçante. Elle s'évapore parfois avant de toucher terre pour donner la virga.
Paramètre d'échellevignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
ParameterA parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Paramètre de positionvignette|Animation de la fonction de densité d'une loi normale, en faisant varier la moyenne entre -5 et 5. La moyenne est un paramètre de position et ne fait que déplacer la courbe en forme de cloche. En théorie des probabilités et statistiques, un paramètre de position (ou de localisation) est, comme son nom l'indique, un paramètre qui régit la position d'une densité de probabilité. Si ce paramètre (scalaire ou vectoriel) est noté λ, la densité se présente formellement comme : où f représente en quelque sorte la densité témoin.
Plan d'urgenceUn plan d'urgence ou plan catastrophe est un dispositif prévoyant l'organisation des secours en cas de catastrophes ou d'événements de grande ampleur ou à risque majeur, mettant en péril la santé des personnes, d'animaux (sauvages ou d'élevage), de plantes ou d'autres organismes vivants, ou l'intégrité des biens. Un plan d'urgence est élaboré par une ou plusieurs des entités distinctes ayant à mener en urgence des actions, lorsque l'événement catastrophique survient : secours publics, collectivités territoriales, industriels, etc.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Biais de sélectionDans une étude statistique, le terme biais de sélection désigne une erreur systématique faite lors de la sélection des sujets à étudier. Ce terme regroupe tous les biais pouvant conduire à ce que les sujets effectivement observés lors d'une enquête ne constituent pas un groupe représentatif des populations censées être étudiées et ne permettent donc pas de répondre aux questions posées dans le protocole. Les biais de sélection se produisent lors de l'échantillonnage, c'est-à-dire lors de la sélection d'un échantillon représentatif de la population étudiée.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.