Zero-dimensional spaceIn mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Specifically: A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.
Solution aqueusevignette|Photo montrant la préparation d'une solution aqueuse au moment où est versé le soluté. En chimie, une solution aqueuse est une phase liquide contenant plusieurs espèces chimiques, dont une ultramajoritaire, l'eau (H2O, le solvant), et des espèces ultraminoritaires, les solutés ou « espèces chimiques dissoutes ».
Dimension de Minkowski-BouligandEn géométrie fractale, la dimension de Minkowski-Bouligand, également appelée dimension de Minkowski, dimension box-counting ou capacité, est une manière de déterminer la dimension fractale d'un sous-ensemble S dans un espace euclidien ou, plus généralement, dans un espace métrique. Pour calculer cette dimension pour une fractale S, placer cette fractale dans un réseau carré et compter le nombre de cases nécessaires pour recouvrir l'ensemble. La dimension de Minkowski est calculée en observant comment ce nombre de cases évolue à mesure que le réseau s'affine à l'infini.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).