Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
KerasKeras est une bibliothèque open source écrite en python. La bibliothèque Keras permet d'interagir avec les algorithmes de réseaux de neurones profonds et d'apprentissage automatique, notamment Tensorflow, Theano, Microsoft Cognitive Toolkit ou PlaidML. Conçue pour permettre une expérimentation rapide avec les réseaux de neurones profonds, elle se concentre sur son ergonomie, sa modularité et ses capacites d’extension. Elle a été développée dans le cadre du projet ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System).
Attention (machine learning)Machine learning-based attention is a mechanism mimicking cognitive attention. It calculates "soft" weights for each word, more precisely for its embedding, in the context window. It can do it either in parallel (such as in transformers) or sequentially (such as recursive neural networks). "Soft" weights can change during each runtime, in contrast to "hard" weights, which are (pre-)trained and fine-tuned and remain frozen afterwards. Multiple attention heads are used in transformer-based large language models.
Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Attaque par usurpation d'identitéDans le contexte de la sécurité de l'information, et en particulier de la sécurité des réseaux, une attaque par usurpation d'identité est une situation dans laquelle une personne ou un programme réussit à s'identifier à un autre en falsifiant des données, pour obtenir un avantage illégitime. De nombreux protocoles de la suite TCP/IP ne fournissent pas de mécanismes pour authentifier la source ou la destination d'un message, ce qui les rend vulnérables aux attaques d'usurpation lorsque des précautions supplémentaires ne sont pas prises par les applications pour vérifier l'identité de l'hôte d'envoi ou de réception.
Attaque par déni de serviceUne attaque par déni de service (abr. DoS attack pour Denial of Service attack en anglais) est une attaque informatique ayant pour but de rendre indisponible un service, d'empêcher les utilisateurs légitimes d'un service de l'utiliser. À l’heure actuelle la grande majorité de ces attaques se font à partir de plusieurs sources, on parle alors d'attaque par déni de service distribuée (abr. DDoS attack pour Distributed Denial of Service attack).
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.