Médecine personnaliséeLa médecine personnalisée est une médecine cherchant à améliorer la stratification et la prise en charge des patients en utilisant des informations biologiques et des biomarqueurs au niveau des voies moléculaires des maladies, de la génétique, de la protéomique ainsi que de la métabolomique. La définition de la médecine personnalisée n’a pas été véritablement établie et est parfois floue.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Human genomeThe human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome and the mitochondrial genome. Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs.
Causal modelIn the philosophy of science, a causal model (or structural causal model) is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for. They can allow some questions to be answered from existing observational data without the need for an interventional study such as a randomized controlled trial.
Modèle causal de Neyman-RubinLe modèle causal de Neyman-Rubin (ou modèle à résultats potentiels, en anglais potential outcome model) est un cadre de pensée permettant d'identifier statistiquement l'effet causal d'une variable sur une autre. La première version du modèle a été proposée par Jerzy Neyman en 1923 dans son mémoire de maîtrise. Le modèle a ensuite été généralisé par Donald Rubin dans un article intitulé « ». Le nom du modèle a été donné par Paul Holland dans un article de 1986 intitulé « ». Expérience naturelle Méthode des
Ressource du World Wide Webalt=Logo Resource Description Framework RDF|vignette|217x217px|Logo Resource Description Framework RDF Une ressource du World Wide Web est un élément constitutif de base de l'architecture du World Wide Web. C'est la traduction littérale du mot anglais resource, dont le sens est à peu près aussi général que celui du mot français. Le terme a désigné d'abord le référent d'une URL, typiquement une page web. Cette définition a par la suite été généralisée à tous les référents des URI (), et plus récemment des IRI ().
Précision et rappelvignette|350px|Précision et rappel (« recall »). La précision compte la proportion d'items pertinents parmi les items sélectionnés alors que le rappel compte la proportion d'items pertinents sélectionnés parmi tous les items pertinents sélectionnables. Dans les domaines de la reconnaissance de formes, de la recherche d'information et de la classification automatique, la précision (ou valeur prédictive positive) est la proportion des items pertinents parmi l'ensemble des items proposés ; le rappel (ou sensibilité) est la proportion des items pertinents proposés parmi l'ensemble des items pertinents.
Séquençage de l'ADNcadre|Résultat du séquençage par la méthode de Sanger. L'ordre de chaque bande indique la position d'un nucléotide A,T,C ou G Le séquençage de l'ADN consiste à déterminer l'ordre d'enchaînement des nucléotides pour un fragment d’ADN donné. La séquence d’ADN contient l’information nécessaire aux êtres vivants pour survivre et se reproduire. Déterminer cette séquence est donc utile aussi bien pour les recherches visant à savoir comment vivent les organismes que pour des sujets appliqués.
Modèle de fondationUn modèle de fondation est un modèle d'intelligence artificielle de grande taille, entraîné sur une grande quantité de données non étiquetées (généralement par apprentissage auto-supervisé ). Le modèle résultant peut être adapté à un large éventail de tâches en aval (downstream tasks en anglais). Depuis leur introduction en 2018, les modèles de fondation ont induit une transformation majeure dans la manière de construire les systèmes d'IA. Les premiers modèles de fondation étaient de grands modèles de langage pré-entraînés, notamment BERT et GPT-3.
Test ADN généalogiqueUn test ADN généalogique est un test basé sur l'acide désoxyribonucléique (ADN) qui examine des emplacements spécifiques du génome d'une personne afin de rechercher ou de vérifier des relations généalogiques ancestrales ou (avec une fiabilité moindre) d'estimer le mélange ethnique d'un individu. Étant donné que différentes sociétés de test utilisent différents groupes ethniques de référence, composés de personnes testées et dont les origines antérieures au recensement étaient inconnues, la composition ethnique estimée est généralement très contradictoire.