Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
Generative grammarGenerative grammar, or generativism ˈdʒɛnərətɪvɪzəm, is a linguistic theory that regards linguistics as the study of a hypothesised innate grammatical structure. It is a biological or biologistic modification of earlier structuralist theories of linguistics, deriving ultimately from glossematics. Generative grammar considers grammar as a system of rules that generates exactly those combinations of words that form grammatical sentences in a given language.
ImageNetImageNet est une base de données d'images annotées produit par l'organisation du même nom, à destination des travaux de recherche en vision par ordinateur. En 2016, plus de dix millions d'URLs ont été annotées à la main pour indiquer quels objets sont représentés dans l'image ; plus d'un million d'images bénéficient en plus de boîtes englobantes autour des objets. La base de données d'annotations sur des URL d'images tierces est disponible librement, ImageNet ne possédant cependant pas les images elles-mêmes.
Alignement de séquencesEn bio-informatique, l'alignement de séquences (ou alignement séquentiel) est une manière de représenter deux ou plusieurs séquences de macromolécules biologiques (ADN, ARN ou protéines) les unes sous les autres, de manière à en faire ressortir les régions homologues ou similaires. L'objectif de l'alignement est de disposer les composants (nucléotides ou acides aminés) pour identifier les zones de concordance. Ces alignements sont réalisés par des programmes informatiques dont l'objectif est de maximiser le nombre de coïncidences entre nucléotides ou acides aminés dans les différentes séquences.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Synthetic mediaSynthetic media (also known as AI-generated media, media produced by generative AI, personalized media, and colloquially as deepfakes) is a catch-all term for the artificial production, manipulation, and modification of data and media by automated means, especially through the use of artificial intelligence algorithms, such as for the purpose of misleading people or changing an original meaning.
HyperparamètreDans l'apprentissage automatique, un hyperparamètre est un paramètre dont la valeur est utilisée pour contrôler le processus d'apprentissage. En revanche, les valeurs des autres paramètres (généralement la pondération de nœuds) sont obtenues par apprentissage. Les hyperparamètres peuvent être classifiés comme étant des hyperparamètres de modèle, qui ne peuvent pas être déduits en ajustant la machine à l'ensemble d'entraînement parce qu'ils s'appliquent à la tâche de la sélection du modèle, ou des hyperparamètres d'algorithmes, qui en principe n'ont aucune influence sur la performance du modèle mais affectent la rapidité et la qualité du processus d'apprentissage.
Intelligence artificielle distribuéeL'Intelligence Artificielle Distribuée (IAD) est une branche de l'Intelligence artificielle. On distinguera : le principe d'adapter les approches de l'Intelligence Artificielle classique sur une architecture distribuée (par exemple avec une parallélisation des programmes) les approches où l'Intelligence Artificielle est conceptuellement répartie sur un certain nombre d'entités (réseaux de neurones artificiels, systèmes multi-agents) de façon similaire à une Intelligence distribuée.
Intelligence artificielle généralevignette|Image générée en juin 2022 par le modèle de génération d'images DALL-E-mini, à partir de la consigne « Intelligence artificielle ». Une intelligence artificielle générale (IAG) est une intelligence artificielle capable d'effectuer ou d'apprendre pratiquement n'importe quelle tâche cognitive propre aux humains ou autres animaux. La création d'intelligences artificielles générales est un des principaux objectifs de certaines entreprises comme OpenAI, DeepMind et Anthropic.
Multiple sequence alignmentMultiple sequence alignment (MSA) may refer to the process or the result of sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. In many cases, the input set of query sequences are assumed to have an evolutionary relationship by which they share a linkage and are descended from a common ancestor. From the resulting MSA, sequence homology can be inferred and phylogenetic analysis can be conducted to assess the sequences' shared evolutionary origins.