Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
W-algebraIn conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples. A W-algebra is an associative algebra that is generated by the modes of a finite number of meromorphic fields , including the energy-momentum tensor . For , is a primary field of conformal dimension .
Minimal model (physics)In theoretical physics, a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra. Minimal models have been classified and solved, and found to obey an ADE classification. The term minimal model can also refer to a rational CFT based on an algebra that is larger than the Virasoro algebra, such as a W-algebra. In minimal models, the central charge of the Virasoro algebra takes values of the type where are coprime integers such that .
Gravitation quantique à bouclesLa gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps.
Physique des particulesLa physique des particules ou la physique subatomique est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi parfois physique des hautes énergies car de nombreuses particules élémentaires, instables, n'existent pas à l'état naturel et peuvent seulement être détectées lors de collisions à hautes énergies entre particules stables dans les accélérateurs de particules.
Interaction élémentaireQuatre interactions élémentaires sont responsables de tous les phénomènes physiques observés dans l'Univers, chacune se manifestant par une force dite force fondamentale. Ce sont l'interaction nucléaire forte, l'interaction électromagnétique, l'interaction faible et l'interaction gravitationnelle. En physique classique, les lois de la gravitation et de l'électromagnétisme étaient considérées comme axiomes.
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Électrodynamique quantiqueLélectrodynamique quantique (parfois dite relativiste) est une théorie physique ayant pour but de concilier l'électromagnétisme avec la mécanique quantique en utilisant un formalisme lagrangien relativiste. Selon cette théorie, les charges électriques interagissent par échange de photons virtuels. L'étude statique (absence d'évolution au cours du temps) du champ électrique s'appelle électrostatique, celle du champ magnétique magnétostatique. En dynamique, les deux champs deviennent couplés, devenant une seule discipline, l'électro-magnéto-dynamique.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.