En mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire l'une de l'autre (nécessaire pour garantir la commutativité). vignette|upright=2.18|Convolution d'une fonction porte par elle-même. Le produit de convolution généralise l'idée de moyenne glissante et est la représentation mathématique de la notion de filtre linéaire. Il s'applique aussi bien à des données temporelles (en traitement du signal par exemple) qu'à des données spatiales (en ). En statistique, on utilise une formule très voisine pour définir la corrélation croisée. Le produit de convolution de deux fonctions réelles ou complexes f et g, est une autre fonction, qui se note généralement et qui est définie par : Parfois l'opération ∗s'appelle loi de convolution et s'appelle la convolée. Pour des suites (en remplaçant la mesure de Lebesgue par la mesure de comptage) : Lorsqu'il s'agit de séries, on parle de produit de Cauchy (mais dans ce qui suit, nous n'utiliserons que la version « continue »). On peut considérer cette formule comme une généralisation de l'idée de moyenne mobile. Pour que cette définition ait un sens, il faut que f et g satisfassent certaines hypothèses ; par exemple, si ces deux fonctions sont intégrables au sens de Lebesgue (c'est-à-dire qu'elles sont mesurables et que l'intégrale de leur module est finie), leur produit de convolution est défini pour presque tout x et est lui-même intégrable. Plus généralement, si f ∈ L et g ∈ L et avec , alors f ∗ g ∈ L : cf. « Inégalité de Young pour la convolution ».

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (28)
COM-303: Signal processing for communications
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
MATH-303: Measures and integration
This course provides an introduction to the theory of measures and integration on abstract measure spaces.
MICRO-512: Image processing II
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
Afficher plus
Séances de cours associées (149)
Réseaux neuronaux convolutionnels : fondamentaux
Couvre les bases des réseaux neuronaux convolutionnels, y compris l'optimisation de la formation, la structure des couches et les pièges potentiels des statistiques sommaires.
Analyse de Fourier: Applications et formule d'inversion
Explore les applications d'analyse de Fourier et la formule d'inversion dans le contexte de la périodicité et des fonctions continues.
Formule d'inversion de Fourier
Couvre la formule d'inversion de Fourier, explorant ses concepts mathématiques et ses applications, soulignant l'importance de comprendre le signe.
Afficher plus
Publications associées (141)
Concepts associés (27)
Transformation de Fourier
thumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Distribution de Dirac
En mathématiques, plus précisément en analyse, la distribution de Dirac, aussi appelée par abus de langage fonction δ de Dirac, introduite par Paul Dirac, peut être informellement considérée comme une fonction qui prend une « valeur » infinie en 0, et la valeur zéro partout ailleurs, et dont l'intégrale sur R est égale à 1. La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives.
Série de Fourier
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Afficher plus
MOOCs associés (6)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.