Fibré tangentEn mathématiques, et plus précisément en géométrie différentielle, le fibré tangent TM associé à une variété différentielle M est la somme disjointe de tous les espaces tangents en tous les points de la variété, soit : où est l'espace tangent de M en x. Un élément de TM est donc un couple (x, v) constitué d'un point x de M et d'un vecteur v tangent à M en x. Le fibré tangent peut être muni d'une topologie découlant naturellement de celle de M.
Canonical ringIn mathematics, the pluricanonical ring of an algebraic variety V (which is nonsingular), or of a complex manifold, is the graded ring of sections of powers of the canonical bundle K. Its nth graded component (for ) is: that is, the space of sections of the n-th tensor product Kn of the canonical bundle K. The 0th graded component is sections of the trivial bundle, and is one-dimensional as V is projective. The projective variety defined by this graded ring is called the canonical model of V, and the dimension of the canonical model is called the Kodaira dimension of V.
Ruled varietyIn algebraic geometry, a variety over a field k is ruled if it is birational to the product of the projective line with some variety over k. A variety is uniruled if it is covered by a family of rational curves. (More precisely, a variety X is uniruled if there is a variety Y and a dominant rational map Y × P1 – → X which does not factor through the projection to Y.) The concept arose from the ruled surfaces of 19th-century geometry, meaning surfaces in affine space or projective space which are covered by lines.
Holomorphic vector bundleIn mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Siegel modular varietyIn mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943. Siegel modular varieties are the most basic examples of Shimura varieties.
K3 (géométrie)En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .
Dual bundleIn mathematics, the dual bundle is an operation on vector bundles extending the operation of duality for vector spaces. The dual bundle of a vector bundle is the vector bundle whose fibers are the dual spaces to the fibers of . Equivalently, can be defined as the Hom bundle that is, the vector bundle of morphisms from to the trivial line bundle Given a local trivialization of with transition functions a local trivialization of is given by the same open cover of with transition functions (the inverse of the transpose).
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Variété (linguistique)En sociolinguistique, une variété est, dans une langue donnée, une ramification qui constitue un système linguistique spécifique et cohérent, utilisé par une catégorie de locuteurs délimitée selon certains critères extra-linguistiques. Dans la sociolinguistique américaine, le terme lecte (du grec lektos « choisi ; mot, expression »), introduit pour dénommer la variété de langue, est également employé comme élément second de composition dans la dénomination de divers types de variétés : idiolecte (variété individuelle) ; « régiolecte », « géolecte », « topolecte » (variété régionale) ; sociolecte (variété sociale) ; « ethnolecte » (variété parlée par une ethnie) ; « technolecte » (langage ou jargon de spécialité).