Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Molecular design softwareMolecular design software is notable software for molecular modeling, that provides special support for developing molecular models de novo. In contrast to the usual molecular modeling programs, such as for molecular dynamics and quantum chemistry, such software directly supports the aspects related to constructing molecular models, including: Molecular graphics interactive molecular drawing and conformational editing building polymeric molecules, crystals, and solvated systems partial charges development g
Science des matériauxLa science des matériaux repose sur la relation entre les propriétés, la morphologie structurale et la mise en œuvre des matériaux qui constituent les objets qui nous entourent (métaux, polymères, semi-conducteurs, céramiques, composites, etc.). Elle se focalise sur l'étude des principales caractéristiques des matériaux, ainsi que leurs propriétés mécaniques, chimiques, électriques, thermiques, optiques et magnétiques. La science des matériaux est au cœur de beaucoup des grandes révolutions techniques.
Coverage probabilityIn statistics, the coverage probability, or coverage for short, is the probability that a confidence interval or confidence region will include the true value (parameter) of interest. It can be defined as the proportion of instances where the interval surrounds the true value as assessed by long-run frequency. The fixed degree of certainty pre-specified by the analyst, referred to as the confidence level or confidence coefficient of the constructed interval, is effectively the nominal coverage probability of the procedure for constructing confidence intervals.
Amarrage (moléculaire)vignette|Petite molécule amarrée à une protéine. Dans le domaine de la modélisation moléculaire, l’amarrage (en anglais docking) est une méthode qui calcule l'orientation préférée d'une molécule vers une seconde lorsqu'elles sont liées pour former un complexe stable. Connaître l'orientation préférée sert à prévoir la solidité de l'union entre deux molécules. Les associations entre des molécules d'importance biologique, telles que les protéines, les acides nucléiques, les glucides et les matières grasses jouent un rôle essentiel dans la transduction de signal.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Fitness functionA fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in evolutionary algorithms (EA), such as genetic programming and genetic algorithms to guide simulations towards optimal design solutions. In the field of EAs, each design solution is commonly represented as a string of numbers (referred to as a chromosome).
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.