Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
It is well established that the O(N) Wilson-Fisher (WF) CFT sits at a kink of the numerical bounds from bootstrapping four point function of O(N) vector. Moving away from the WF kinks, there indeed exists another family of kinks (dubbed non-WF kinks) on the curve of O(N) numerical bounds. Different from the O(N) WF kinks that exist for arbitary N in 2 < d < 4 dimensions, the non-WF kinks exist in arbitrary dimensions but only for a large enough N > N-c(d) in a given dimension d. In this paper we have achieved a thorough understanding for few special cases of these non-WF kinks, which already hints interesting physics. The first case is the O(4) bootstrap in 2d, where the non-WF kink turns out to be the SU(2)(1) Wess-Zumino-Witten (WZW) model, and all the SU(2)(k>2) WZW models saturate the numerical bound on the left side of the kink. This is a mirror version of the Z(2) bootstrap, where the 2d Ising CFT sits at a kink while all the other minimal models saturating the bound on the right. We further carry out dimensional continuation of the 2d S U(2)(1) kink towards the 3d SO(5) deconfined phase transition. We find the kink disappears at around d = 2.7 dimensions indicating the SO(5) deconfined phase transition is weakly first order. The second interesting observation is, the O(2) bootstrap bound does not show any kink in 2d (N-c = 2), but is surprisingly saturated by the 2d free boson CFT (also called Luttinger liquid) all the way on the numerical curve. The last case is the N = infinity limit, where the non-WF kink sits at (Delta(phi), Delta(T)) = (d - 1, 2d) in d dimensions. We manage to write down its analytical four point function in arbitrary dimensions, which equals to the subtraction of correlation functions of a free fermion theory and generalized free theory. An important feature of this solution is the existence of a full tower of conserved higher spin current. We speculate that a new family of CFTs will emerge at non-WF kinks for finite N, in a similar fashion as O(N) WF CFTs originating from free boson at N = infinity.
Miguel Alexandre Ribeiro Correia