Concept

Two-dimensional conformal field theory

Résumé
A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models. Two-dimensional conformal field theories (CFTs) are defined on Riemann surfaces, where local conformal maps are holomorphic functions. While a CFT might conceivably exist only on a given Riemann surface, its existence on any surface other than the sphere implies its existence on all surfaces. Given a CFT, it is indeed possible to glue two Riemann surfaces where it exists, and obtain the CFT on the glued surface. On the other hand, some CFTs exist only on the sphere. Unless stated otherwise, we consider CFT on the sphere in this article. Given a local complex coordinate , the real vector space of infinitesimal conformal maps has the basis , with . (For example, and generate translations.) Relaxing the assumption that is the complex conjugate of , i.e. complexifying the space of infinitesimal conformal maps, one obtains a complex vector space with the basis . With their natural commutators, the differential operators generate a Witt algebra. By standard quantum-mechanical arguments, the symmetry algebra of conformal field theory must be the central extension of the Witt algebra, i.e. the Virasoro algebra, whose generators are , plus a central generator. In a given CFT, the central generator takes a constant value , called the central charge. The symmetry algebra is therefore the product of two copies of the Virasoro algebra: the left-moving or holomorphic algebra, with generators , and the right-moving or antiholomorphic algebra, with generators .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Aucun résultat

Concepts associés

Chargement

Cours associés (5)
MATH-605: Conformal bootstrap and Liouville conformal field
The course will focus on a probabilistic construction of a conformal field theory related to random Riemann surfaces, called the Liouville conformal field theory. The symmetries of the theory allow to
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
PHYS-645: Physics of random and disordered systems
Introduction to the physics of random processes and disordered systems, providing an overview over phenomena, concepts and theoretical approaches Topics include: Random walks; Roughening/pinning; Lo
Afficher plus
Séances de cours associées

Chargement

MOOCs associés

Aucun résultat