Méthodes quantitativesLes méthodes quantitatives sont des méthodes de recherche, utilisant des outils d'analyse mathématiques et statistiques, en vue de décrire, d'expliquer et prédire des phénomènes par le biais de données historiques sous forme de variables mesurables. Elles se distinguent ainsi des méthodes dites qualitatives. Le comptage et la mesure sont des méthodes quantitatives banales. Le résultat de la recherche est un nombre ou un ensemble de nombres. On les présente souvent sous forme de tables, de graphiques...
Correction de BonferroniEn statistiques, la correction de Bonferroni est une méthode pour corriger le seuil de significativité lors de comparaisons multiples. La correction de Bonferroni est la méthode de correction la plus simple, bien qu'elle soit conservatrice étant donné qu'elle présente un risque conséquent d'. En effet, cette méthode ne prend pas en compte quelques informations, comme la distribution des valeurs p des différentes comparaisons.
Multiple comparisons problemIn statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. The more inferences are made, the more likely erroneous inferences become. Several statistical techniques have been developed to address that problem, typically by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.
Family-wise error rateIn statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests. John Tukey developed in 1953 the concept of a familywise error rate as the probability of making a Type I error among a specified group, or "family," of tests. Ryan (1959) proposed the related concept of an experimentwise error rate, which is the probability of making a Type I error in a given experiment.
False discovery rateIn statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses) that are false (incorrect rejections of the null). Equivalently, the FDR is the expected ratio of the number of false positive classifications (false discoveries) to the total number of positive classifications (rejections of the null).
Analyse de contenuL’analyse de contenu est une des méthodologies qualitatives utilisées dans les sciences sociales et humaines. On retrouve par exemple des approches en analyse de contenu en sociologie, en communication, en linguistique, en psychologie. Une analyse de contenu consiste en un examen systématique et méthodique de documents textuels ou visuels. Dans une analyse de contenu le chercheur tente de minimiser les éventuels biais cognitifs et culturels en s’assurant de l’objectivité de sa recherche.
Signification statistiquevignette|statistique En statistiques, le résultat d'études qui portent sur des échantillons de population est dit statistiquement significatif lorsqu'il semble exprimer de façon fiable un fait auquel on s'intéresse, par exemple la différence entre 2 groupes ou une corrélation entre 2 données. Dit autrement, il est alors très peu probable que ce résultat apparent soit en fait trompeur s'il n'est pas dû, par exemple, à un , trop petit ou autrement non représentatif (surtout si la population est très diverse).
Data dredgingvignette|Exemple de Data dredging. Le data dredging (littéralement le dragage de données mais mieux traduit comme étant du triturage de données) est une technique statistique qui . Une des formes du data dredging est de partir de données ayant un grand nombre de variables et un grand nombre de résultats, et de choisir les associations qui sont « statistiquement significatives », au sens de la valeur p (on parle aussi de p-hacking).
Tumeur bénignethumb|Tumeur bénigne de la peau d'un chien Une tumeur bénigne est une tumeur sans gravité, c'est-à-dire ne pouvant donner lieu à des métastases et n'étant pas mortelle, par exemple une verrue. Néanmoins une telle tumeur peut évoluer vers une tumeur maligne, qui peut, elle, être fatale si elle n'est pas traitée. Une tumeur bénigne peut cependant être mortelle dans les cas où son environnement ne laisse pas suffisamment de place à son développement. Exemple : une tumeur bénigne au cerveau.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.