In statistics, the Bonferroni correction is a method to counteract the multiple comparisons problem. The method is named for its use of the Bonferroni inequalities. An extension of the method to confidence intervals was proposed by Olive Jean Dunn. Statistical hypothesis testing is based on rejecting the null hypothesis if the likelihood of the observed data under the null hypotheses is low. If multiple hypotheses are tested, the probability of observing a rare event increases, and therefore, the likelihood of incorrectly rejecting a null hypothesis (i.e., making a Type I error) increases. The Bonferroni correction compensates for that increase by testing each individual hypothesis at a significance level of , where is the desired overall alpha level and is the number of hypotheses. For example, if a trial is testing hypotheses with a desired , then the Bonferroni correction would test each individual hypothesis at . Likewise, when constructing multiple confidence intervals the same phenomenon appears. Let be a family of hypotheses and their corresponding p-values. Let be the total number of null hypotheses, and let be the number of true null hypotheses (which is presumably unknown to the researcher). The family-wise error rate (FWER) is the probability of rejecting at least one true , that is, of making at least one type I error. The Bonferroni correction rejects the null hypothesis for each , thereby controlling the FWER at . Proof of this control follows from Boole's inequality, as follows: This control does not require any assumptions about dependence among the p-values or about how many of the null hypotheses are true. Rather than testing each hypothesis at the level, the hypotheses may be tested at any other combination of levels that add up to , provided that the level of each test is decided before looking at the data. For example, for two hypothesis tests, an overall of 0.05 could be maintained by conducting one test at 0.04 and the other at 0.01. The procedure proposed by Dunn can be used to adjust confidence intervals.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
Séances de cours associées (28)
GLM: Essai d'hypothèse statistique
Explore les tests d'hypothèses statistiques, les types d'erreurs, le seuil et les comparaisons multiples dans GLM.
Théorie statistique: Inférence et optimisation
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Analyse des écarts : principes et applications
Explore les principes et les applications de l'analyse des écarts (ANOVA), y compris les hypothèses de test, les modèles, les hypothèses et les tests post-hoc.
Afficher plus
Publications associées (34)

Divergent X-ray tomography reconstruction and optimisation

Youssef Haouchat

In diverse fields such as medical imaging, astrophysics, geophysics, or material study, a common challenge exists: reconstructing the internal volume of an object using only physical measurements taken from its exterior or surface. This scientific approach ...
2023

Social Learning with Disparate Hypotheses

Ali H. Sayed, Stefan Vlaski, Virginia Bordignon, Konstantinos Ntemos

In this paper we study the problem of social learning under multiple true hypotheses and self-interested agents. In this setup, each agent receives data that might be generated from a different hypothesis (or state) than the data other agents receive. In c ...
IEEE2022

Differentiation between benign and malignant vertebral compression fractures using qualitative and quantitative analysis of a single fast spin echo T2-weighted Dixon sequence

Tom Hilbert, Sébastien Bacher

Objectives To determine and compare the qualitative and quantitative diagnostic performance of a single sagittal fast spin echo (FSE) T2-weighted Dixon sequence in differentiating benign and malignant vertebral compression fractures (VCF), using multiple r ...
SPRINGER2021
Afficher plus
Concepts associés (6)
Multiple comparisons problem
In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. The more inferences are made, the more likely erroneous inferences become. Several statistical techniques have been developed to address that problem, typically by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.
Valeur p
vignette|redresse=1.5|Illustration de la valeur-p. X désigne la loi de probabilité de la statistique de test et z la valeur calculée de la statistique de test. Dans un test statistique, la valeur-p (en anglais p-value pour probability value), parfois aussi appelée p-valeur, est la probabilité pour un modèle statistique donné sous l'hypothèse nulle d'obtenir une valeur au moins aussi extrême que celle observée. L'usage de la valeur-p est courant dans de nombreux domaines de recherche comme la physique, la psychologie, l'économie et les sciences de la vie.
Harmonic mean p-value
The harmonic mean p-value (HMP) is a statistical technique for addressing the multiple comparisons problem that controls the strong-sense family-wise error rate (this claim has been disputed). It improves on the power of Bonferroni correction by performing combined tests, i.e. by testing whether groups of p-values are statistically significant, like Fisher's method. However, it avoids the restrictive assumption that the p-values are independent, unlike Fisher's method.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.