SuperlentilleUne superlentille est une lentille optique élaborée avec des métamatériaux et permettant de distinguer des détails jusqu'à vingt fois inférieurs à la longueur d'onde d'utilisation. Une lentille classique est dite « limitée par la diffraction », c'est-à-dire que l'image la plus petite que l'on pourra obtenir sera toujours une tache d'Airy et donc possède un diamètre dépendant du diamètre de la lentille et de la longueur d'onde d'utilisation, limitant l'utilisation de lentilles classiques en verre optique à l'observation d'objet de quelques centaines de nanomètres.
Réseau sémantiqueUn réseau sémantique est un graphe marqué destiné à la représentation des connaissances, qui représente des relations sémantiques entre concepts. Le graphe est orienté ou non orienté. Ses sommets représentent les concepts, et les liens entre les sommets (nœuds) représentent les relations sémantiques, reliant les champs lexicaux. Un réseau sémantique peut être instancié, par exemple,dans une base de données orientée graphes ou un schéma conceptuel. Les réseaux sémantiques normalisés sont exprimés sous forme de triplets RDF.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Apprentissage par problèmesDans l'apprentissage par problèmes (APP), ou apprentissage par résolution de problèmes, les apprenants, regroupés par équipes, travaillent ensemble à résoudre un problème généralement proposé par l'enseignant, problème pour lequel ils n'ont reçu aucune formation particulière, de façon à faire des apprentissages de contenu et de savoir-faire, à découvrir des notions nouvelles de façon active (il s’instruit lui-même) en y étant poussé par les nécessités du problème soumis.
Deeper learningIn U.S. education, deeper learning is a set of student educational outcomes including acquisition of robust core academic content, higher-order thinking skills, and learning dispositions. Deeper learning is based on the premise that the nature of work, civic, and everyday life is changing and therefore increasingly requires that formal education provides young people with mastery of skills like analytic reasoning, complex problem solving, and teamwork. Deeper learning is associated with a growing movement in U.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Radar imageurvignette|Image prise par un radar à synthèse d'ouverture (RSO), monté sur satellite, de l'île de Tenerife aux îles Canaries, montrant les détails géographiques et la végétation en fausses couleurs Un radar imageur est un radar actif qui émet un faisceau d'impulsions dans le domaine des longueurs d'onde centimétriques ou millimétriques pour représenter en deux ou trois dimensions l'environnement exploré. Cette imagerie a des applications tant civiles que militaires.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.