Deep image priorDeep image prior is a type of convolutional neural network used to enhance a given image with no prior training data other than the image itself. A neural network is randomly initialized and used as prior to solve inverse problems such as noise reduction, super-resolution, and inpainting. Image statistics are captured by the structure of a convolutional image generator rather than by any previously learned capabilities.
Web sémantiquevignette|300px|droite|Logo du W3C pour le Web sémantique Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, . L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique.
Image resolutionImage resolution is the level of detail an holds. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height, also known simply as lines, TV lines, or TVL), or to angular subtense.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Pédagogie de projetLa pédagogie de projet est une pratique de pédagogie active qui permet de générer des apprentissages à travers la réalisation d'une production concrète. Le projet peut être individuel (comme un exposé ou une maquette) ou collectif (l'organisation d'une fête, d'un voyage, d'un spectacle). Il est semblable à une En effet, lors de la démarche de projet, l’élève est placé en situation de résolution de problèmes, participant de fait au processus d’apprentissage.
Time delay neural networkTime delay neural network (TDNN) is a multilayer artificial neural network architecture whose purpose is to 1) classify patterns with shift-invariance, and 2) model context at each layer of the network. Shift-invariant classification means that the classifier does not require explicit segmentation prior to classification. For the classification of a temporal pattern (such as speech), the TDNN thus avoids having to determine the beginning and end points of sounds before classifying them.
Categorical distributionIn probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution, (e.g. 1 to K).
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Phenomenon-based learningPhenomenon-based learning (PhBL, PhenoBL or PBL) is a multidisciplinary, constructivist form of learning or pedagogy where students study a topic or concept in a holistic approach instead of in a subject-based approach. PhBL includes both topical learning (also known as topic-based learning or instruction), where the phenomenon studied is a specific topic, event, or fact, and thematic learning (also known as theme-based learning or instruction), where the phenomenon studied is a concept or idea.