Multiple Line Outage Detection in Power Systems by Sparse Recovery Using Transient Data
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The goal of this thesis is to study continuous-domain inverse problems for the reconstruction of sparse signals and to develop efficient algorithms to solve such problems computationally. The task is to recover a signal of interest as a continuous function ...
Sparse recovery is a powerful tool that plays a central role in many applications, including source estimation in radio astronomy, direction of arrival estimation in acoustics or radar, super-resolution microscopy, and X-ray crystallography. Conventional a ...
We investigate the benefits of known partial support for the recovery of joint-sparse signals and demonstrate that it is advantageous in terms of recovery performance for both rank-blind and rank-aware algorithms. We suggest extensions of several joint-spa ...
Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent struct ...
The problem of approximately computing the k dominant Fourier coefficients of a vector X quickly, and using few samples in time domain, is known as the Sparse Fourier Transform (sparse FFT) problem. A long line of work on the sparse FFT has resulted in ...
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties – the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on wei ...
Institute of Electrical and Electronics Engineers2014
We consider the problem of distributed representation of signals in sensor networks, where sensors exchange quantized information with their neighbors. The signals of interest are assumed to have a sparse representation with spectral graph dictionaries. We ...
Compressed sensing is provided a data-acquisition paradigm for sparse signals. Remarkably, it has been shown that the practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sampling rate. In many real-world a ...
Compressed sensing is a new trend in signal processing for efficient sampling and signal acquisition. The idea is that most real-world signals have a sparse representation in an appropriate basis and this can be exploited to capture the sparse signal by ta ...
The theory of compressed sensing studies the problem of recovering a high dimensional sparse vector from its projections onto lower dimensional subspaces. The recently introduced framework of infinite-dimensional compressed sensing [1], to some extent gene ...