Linear system of divisorsIn algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a linear system of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space (X, OX).
Morphism of algebraic varietiesIn algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
K3 (géométrie)En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .
Géométrie birationnellethumb|right|Le cercle est birationnellement équivalent à la droite. Un exemple d'application birationnelle est la projection stéréographique, représentée ici ; avec les notations du texte, P a pour abscisse 1/t. En mathématiques, la géométrie birationnelle est un domaine de la géométrie algébrique dont l'objectif est de déterminer si deux variétés algébriques sont isomorphes, à un ensemble négligeable près. Cela revient à étudier des applications définies par des fonctions rationnelles plutôt que par des polynômes, ces applications n'étant pas définies aux pôles des fonctions.
Elliptic surfaceIn mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. (Over an algebraically closed field such as the complex numbers, these fibers are elliptic curves, perhaps without a chosen origin.) This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change.
Plongement de SegreEn géométrie algébrique, le plongement de Segre est un morphisme qui identifie le produit fibré de deux espaces projectifs à une variété projective. Une conséquence en est que le produit fibré de deux variétés projectives est une variété projective. On fixe un corps et deux entiers naturels et on considère le produit fibré des espaces projectifs de dimensions respectives . Alors il existe un morphisme de variétés algébriques qui est une immersion fermée (i.e. induit un isomorphe sur son image qui est une sous-variété fermée de ).
Canonical bundleIn mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle on . Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle . Equivalently, it is the line bundle of holomorphic n-forms on . This is the dualising object for Serre duality on . It may equally well be considered as an invertible sheaf.
Relation humainevignette|Relation humaine. Une relation humaine implique au moins deux êtres humains et est souvent décrite via des aspects différents, si l'on s'intéresse à la nature de la relation ou si l'on s'intéresse aux personnes en relation. Plusieurs disciplines universitaires travaillent à l'analyser. Certaines étudient régulièrement les questions que pose la société contemporaine : la psychologie, les sciences de la communication, la sociologie ; d'autres se placent dans la perspective de l'anthropologie, de la sémiotique ou allient les deux comme l'anthroposémiotique.
Théorème des hyperplans de LefschetzEn mathématiques, et plus précisément en géométrie algébrique et en topologie algébrique, le théorème des hyperplans de Lefschetz est un énoncé précis de certaines relations entre la forme d'une variété algébrique et la forme de ses sous-variétés. Plus précisément, le théorème énonce que pour une variété X plongée dans l'espace projectif et une section hyperplane (i.e. une intersection de X à un hyperplan) Y, les groupes d'homologie, de cohomologie et d'homotopie de X déterminent ceux de Y.
Fano varietyIn algebraic geometry, a Fano variety, introduced by Gino Fano in , is a complete variety X whose anticanonical bundle KX* is ample. In this definition, one could assume that X is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties.