Intimate relationshipAn intimate relationship is an interpersonal relationship that involves physical or emotional intimacy. Although an intimate relationship is commonly a sexual relationship, it may also be a non-sexual relationship involving family or friends. Emotional intimacy is an essential aspect of a healthy . Feelings of liking or loving may prompt physical intimacy. However, emotional intimacy may or may not be present alongside physical intimacy depending on the relationship.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Kodaira dimensionIn algebraic geometry, the Kodaira dimension κ(X) measures the size of the canonical model of a projective variety X. Igor Shafarevich in a seminar introduced an important numerical invariant of surfaces with the notation κ. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The canonical bundle of a smooth algebraic variety X of dimension n over a field is the line bundle of n-forms, which is the nth exterior power of the cotangent bundle of X.
Plan complexeEn mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. On associe en général le plan complexe à un repère orthonormé direct.
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Conjuguévignette|Représentation géométrique (diagramme d'Argand) de z et de son conjugué z̅ dans le plan complexe. Le conjugué est obtenu par symétrie par l'axe des réels. En mathématiques, le conjugué d'un nombre complexe z est le nombre complexe formé de la même partie réelle que z mais de partie imaginaire opposée. Le conjugué d'un nombre complexe , où a et b sont nombres réels, est noté ou . Dans le plan, le point d'affixe est le symétrique du point d'affixe par rapport à l'axe des abscisses. Le module du conjugué reste inchangé.
ThéorèmeEn mathématiques et en logique, un théorème (du grec théorêma, objet digne d'étude) est une assertion qui est démontrée, c'est-à-dire établie comme vraie à partir d'autres assertions déjà démontrées (théorèmes ou autres formes d'assertions) ou des assertions acceptées comme vraies, appelées axiomes. Un théorème se démontre dans un système déductif et est une conséquence logique d'un système d'axiomes. En ce sens, il se distingue d'une loi scientifique, obtenue par l'expérimentation.
Stokes' theoremStokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface.
Théorème de GreenEn mathématiques, le théorème de Green, ou théorème de Green-Riemann, donne la relation entre une intégrale curviligne le long d'une courbe simple fermée orientée C par morceaux et l'intégrale double sur la région du plan délimitée par cette courbe. Ce théorème, nommé d'après George Green et Bernhard Riemann, est un cas particulier du théorème de Stokes. thumb|upright=0.9|Domaine délimité par une courbe régulière par morceaux. Vu comme cas particulier du théorème de Stokes, le théorème s'écrit sous la forme suivante, en notant ∂D la courbe C et ω la forme différentielle.
Logarithme complexeEn mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.