**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Hemodynamics of the heart's left atrium based on a Variational Multiscale-LES numerical method

Résumé

In this paper, we investigate the haemodynamics of a left atrium (LA) by proposing a computational model suitable to provide physically meaningful fluid dynamics indications and detailed blood flow characterization. In particular, we consider the incompressible Navier-Stokes equations in Arbitrary Lagrangian Eulerian (ALE) formulation to deal with the LA domain under prescribed motion. A Variational Multiscale (VMS) method is adopted to obtain a stable formulation of the Navier-Stokes equations discretized by means of the Finite Element method and to account for turbulence modelling based on Large Eddy Simulation (LES). The aim of this paper is twofold: on one hand to improve the general understanding of blood flow in the human LA in normal conditions; on the other, to analyse the effects of the turbulence VMS-LES method on a situation of blood flow which is neither laminar, nor fully turbulent, but rather transitional as in LA. Our results suggest that if relatively coarse meshes are adopted, the additional stabilization terms introduced by the VMS-LES method allow to better predict transitional effects and cycle-to-cycle blood flow variations than the standard SUPG stabilization method. (C) 2021 Elsevier Masson SAS. All rights reserved.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (9)

Chargement

Chargement

Chargement

Filippo Menghini, Alfio Quarteroni

We construct an idealized computational model of the left human heart for the study of the blood flow dynamics in the left atrium and ventricle. We solve the Navier-Stokes equations in the ALE formulation and we prescribe the left heart wall displacement based on physiological data; moreover, we consider the presence of both the mitral and aortic valves through the resistive method. We simulate the left heart hemodynamics by means of the finite element method and we consider the variational multiscale large eddy simulation (LES) formulation to account for the transitional and nearly turbulent regimes of the blood flow in physiological conditions. The main contribution of this paper is the characterization of the blood flow in an idealized configuration of the left heart aiming at reproducing function in normal conditions. Our assessment is based on the analysis of instantaneous and phase averaged velocity fields, blood pressure, and other clinically meaningful fluid dynamics indicators. Finally, we show that our idealized computational model can be suitably used to study and critically discuss pathological scenarios like that of a regurgitant mitral valve.

The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics problems are devised in two particularly arduous situations: fluid domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities of varying geometries are thoroughly investigated in the two following frameworks: transition with a free surface and confined turbulence. The physical system we consider is made of an incompressible Newtonian fluid filling a bounded, or partially bounded cavity. A series of shear-driven flows are easily generated by setting in motion some part of the container boundary. These driven-cavity flows are not only technologically important, they are of great scientific interest because they display almost all physical fluid phenomena that can possibly occur in incompressible flows, and this in the simplest geometrical settings. Thus corner eddies, secondary flows, longitudinal vortices, complex three-dimensional patterns, chaotic particle motions, nonuniqueness, transition, and turbulence all occur naturally and can be studied in the same geometry. This facilitates the comparison of results from experiments, analysis, and computation over the whole range of Reynolds numbers. The flows under consideration are part of a larger class of confined flows driven by linear or angular momentum gradients. This dissertation reports a detailed study of a novel numerical method developed for the simulation of an unsteady free-surface flow in three-space-dimensions. This method relies on a moving-grid technique to solve the Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian (ALE) kinematics and discretized by the spectral element method. A comprehensive analysis of the continuous and discretized formulations of the general problem in the ALE frame, with nonlinear, non-homogeneous and unsteady boundary conditions is presented. In this dissertation, we first consider in the internal turbulent flow of a fluid enclosed in a bounded cubical cavity driven by the constant translation of its lid. The solution of this flow relied on large-eddy simulations, which served to improve our physical understanding of this complex flow dynamics. Subsequently, a novel subgrid model based on approximate deconvolution methods coupled with a dynamic mixed scale model was devised. The large-eddy simulation of the lid-driven cubical cavity flow based on this novel subgrid model has shown improvements over traditional subgrid-viscosity type of models. Finally a new interpretation of approximate deconvolution models when used with implicit filtering as a way to approximate the projective grid filter was given. This led to the introduction of the grid filter models. Through the use of a newly-developed method of numerical simulation, in this dissertation we solve unsteady flows with a flat and moving free-surface in the transitional regime. These flows are the incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top surface and driven by the steady rotation of the bottom wall. New flow states are investigated based on the fully three-dimensional solution of the Navier-Stokes equations for these free-surface cylindrical swirling flows, without resorting to any symmetry properties unlike all other results available in the literature. To our knowledge, this study delivers the most general available results for this free-surface problem due to its original mathematical treatment. This second part of the dissertation is a basic research task directed at increasing our understanding of the influence of the presence of a free surface on the intricate transitional flow dynamics of shear-driven flows.

Gonçalo Pena, Alfio Quarteroni

In this paper we address the numerical approximation of the incompressible Navier-Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the incompressible Navier-Stokes equations and propose a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic linear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case. (C) 2011 Elsevier B.V. All rights reserved.

Concepts associés (13)

Équations de Navier-Stokes

thumb|Léonard de Vinci : écoulement dans une fontaine
En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des f

Méthode des éléments finis

En analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci pe

Turbulence

vignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence.
La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout poi