NanofilUn nanofil est une nanostructure, dont le diamètre est exprimé en nanomètre, donc en principe de 1 à 999 nanomètres. Pour plus de simplicité, on tolère un certain débordement dans ces dimensions. Alternativement, les nanofils peuvent être définis comme des structures qui ont une épaisseur ou un diamètre définis, mais d'une longueur quelconque. À ces échelles les effets quantiques sont importants - d'où l'utilisation du terme de « fils quantiques ».
Graphene nanoribbonGraphene nanoribbons (GNRs, also called nano-graphene ribbons or nano-graphite ribbons) are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene. Large quantities of width-controlled GNRs can be produced via graphite nanotomy, where applying a sharp diamond knife on graphite produces graphite nanoblocks, which can then be exfoliated to produce GNRs as shown by Vikas Berry.
GraphèneLe graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
NanorobotiqueLa nanorobotique est un domaine technologique émergent qui crée des machines ou des robots dont les composants sont à l'échelle du nanomètre (10-9 mètres) ou à une échelle proche. Plus précisément, la nanorobotique (par opposition à la microrobotique) désigne la discipline d'ingénierie des nanotechnologies qui consiste à concevoir et à construire des nanorobots, avec des dispositifs dont la taille varie de 0 à 5. Les termes nanorobot, nanoide, nanite, nanomachine ou nanomite ont également été utilisés pour décrire de tels dispositifs actuellement en cours de recherche et développement.
Surface implicitevignette|implicit surface torus (R=40, a=15) vignette|implicit surface of genus 2 150px|vignette|implicit non algebraic surface (wineglas) vignette|equipotential surface of 4 point charges 400px|vignette|metamorphoses between two implicit surfaces (torus and a constant distance product surface) 240px|vignette|approximation of three tori (parallel projection) 280px|vignette|PovRay-image (central projection) of an approximation of three tori 400px|vignette|PovRay-Bild: metamorphoses between a sphere and a cons
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Surface de révolutionEn mathématiques, une surface de révolution est une surface de R, invariante par rotation autour d'un axe fixe. Une surface balayée par la rotation d'une courbe quelconque autour d'un axe fixe est une surface de révolution. Son intersection avec un plan contenant l'axe s'appelle une méridienne. Son intersection avec un plan perpendiculaire à l'axe est formée de cercles appelés parallèles. Les surfaces de révolution comprennent les sphères, les tores, cylindre de révolution, ellipsoïde de révolution et hyperboloïdes de révolution, les ovoïdes, etc.
Parametric surfaceA parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.