Chauffe-eau solaireUn chauffe-eau solaire est un dispositif de captage de l'énergie solaire destiné à fournir partiellement ou totalement de l'eau chaude sanitaire (ECS). Quand il est destiné à une maison individuelle ou à l'usage d'un seul foyer, on parle de CESI, pour « Chauffe-Eau Solaire Individuel ». Ce type de chauffage de l'eau permet, habituellement, de compléter les autres types de chauffage de l'eau, exploitant d'autres sources énergétiques (électricité, énergies fossiles, biomasse) ; dans certaines conditions il permet de les remplacer totalement.
État stationnaireEn physique, un procédé est dit à l'état stationnaire ou en régime stationnaire si les variables le décrivant ne varient pas avec le temps. Mathématiquement un tel état se définit par: quelle que soit propriété du système (significative dans la présente perspective). Un exemple de procédé stationnaire est un réacteur chimique dans une phase de production continue. Un tel système travaille à température, à concentrations (réactifs et produits) et à volume constants ; en revanche, la couleur ou la texture du milieu peuvent être non-significatives.
LinearizationIn mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology.
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
AccélérationL'accélération est une grandeur physique vectorielle, appelée de façon plus précise « vecteur accélération », utilisée en cinématique pour représenter la modification affectant la vitesse d'un mouvement en fonction du temps. La norme (l'intensité) de ce vecteur est appelée simplement « accélération » sans autre qualificatif. Dans le langage courant, l'accélération s'oppose à la décélération (mathématiquement, une accélération négative) et indique l'augmentation de la vitesse ou de la fréquence d'évolution d'un processus quelconque, par exemple l'accélération de la fréquence cardiaque ou celle d'une suite de situations.
M60 PattonLe char M60 Patton est le tout premier char de combat américain. Développé à partir du char M48A2, il fut massivement utilisé durant la guerre froide par les États-Unis et leurs alliés (en particulier ceux de l'OTAN) et reste encore largement utilisé aujourd'hui, bien qu'il ait été remplacé aux États-Unis par le M1 Abrams. Étudié à partir de 1956, le M60 équipa les unités de l'US Army en Europe à partir de décembre 1960 sous l'appellation Gun Full Tracked Combat Tank (l'appellation 105mm gun main battle tank M60 ne fut jamais standardisée).
Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Réseau de distribution d'eauUn réseau de distribution d'eau est une structure permettant de garantir l'approvisionnement en eau potable d'une zone (résidence, village, ville) ou industrielle. Cette eau est généralement froide mais certaines villes distribuent aussi de l'eau chaude sanitaire. Des enjeux sanitaires sont liés à la qualité de l'eau (qui est encore dans certaines régions dégradée par le plomb de tuyauteries anciennes, peut contenir des fibres d'amiante libérées par des tuyaux d'amiante-ciment, ou des contaminants liés à des fuites du réseau.
Four-accelerationIn the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge. In inertial coordinates in special relativity, four-acceleration is defined as the rate of change in four-velocity with respect to the particle's proper time along its worldline.