Social NCE: Contrastive Learning of Socially-aware Motion Representations
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using class ...
Many games have undesirable Nash equilibria. For exam- ple consider a resource allocation game in which two players compete for an exclusive access to a single resource. It has three Nash equilibria. The two pure-strategy NE are effi- cient, but not fair. ...
Reputation-based trust models based on statistical learning have been intensively studied for large-scale distributed systems whereas practical application of game-theoretic approaches using sanctioning are still very little understood in such settings. Th ...
Using each other's knowledge and expertise in learning - what we call cooperation in learning- is one of the major existing methods to reduce the number of learning trials, which is quite crucial for real world applications. In situated systems, robots bec ...
We describe a new method for phoneme sequence recognition given a speech utterance, which is not based on the HMM. In contrast to HMM-based approaches, our method uses a discriminative kernel-based training procedure in which the learning process is tailor ...
We describe a new method for phoneme sequence recognition given a speech utterance. In contrast to HMM-based approaches, our method uses a kernel-based discriminative training procedure in which the learning process is tailored to the goal of minimizing th ...
Artificial neural networks are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and ...
In this paper we develop a multiagent simulation model to explore the impact of learning dynamics on the productive implementation of innovations in project networks comprised of designers and contractors. Though researchers generally agree that when firms ...
Environments with varying reward contingencies constitute a challenge to many living creatures. In such conditions, animals capable of adaptation and learning derive an advantage. Recent studies suggest that neuromodulatory dynamics are a key factor in reg ...
In this paper we develop a multi-agent simulation model to explore the issue of learning in interorganizational networks. Though interorganizational network researchers generally agree that when firms form into networks they will gain access to new knowled ...