Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Écran tactilethumb|L'écran tactile d'une borne d'accueil. Un écran tactile est un périphérique informatique qui combine les fonctionnalités d'affichage d'un écran (moniteur) et celles d'un dispositif de pointage comme la souris, le pavé tactile ou le stylet optique. Cela permet de réduire le nombre de périphériques sur certains systèmes et de réaliser des logiciels ergonomiques très bien adaptés à certaines fonctions.
Régression localeLa régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
Minimum mean square errorIn statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
RadiocommandeUne radiocommande est un type de télécommande, un outil permettant de contrôler à distance un appareil, via de la radiocommunication. Ce type de commande est utilisé dans l'aéronautique, l'aérospatiale, le modélisme, ou encore des situations, ou une action pouvant être dangereuse pour les humains dans lequel un robot radiocommandé intervient. En 1894, le britannique Patrice Dubrulle, utilise le cohéreur du français Édouard Branly, pionnier de la radio, pour permettre à un de déplacer un rayon de lumière lorsqu'une onde électromagnétique est générée artificiellement.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Meta-optimizationIn numerical optimization, meta-optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm. Meta-optimization and related concepts are also known in the literature as meta-evolution, super-optimization, automated parameter calibration, hyper-heuristics, etc.
Prothèse (médecine)vignette|La Jambe de Capoue, en bois recouvert de bronze. Une est un dispositif artificiel destiné à remplacer un membre, un organe ou une articulation. Le mot prothèse vient du latin prosthesis venant du grec signifiant « action d'ajouter ». La première référence à un membre artificiel apparait dans le poème épique indien Rig-Véda: il s'agit de l'amputation de la jambe de la reine guerrière Vishpla. Elle retourne au combat après avoir été équipée d'une jambe de fer par les jumeaux divins Ashvin.