Publication

A Fast Ion Loss Detector for the TCV Tokamak

Lorenzo Stipani
2021
Thèse EPFL
Résumé

A Fast Ion Loss Detector (FILD) was designed, assembled, installed and commissioned for TCV. This is a radially positionable, scintillator based detector that provides information on the 2D fast-ion velocity space lost at the probe's location. The collected particles are collimated inside the probe head and impinge upon a plate coated with a scintillator material that emits light. The photon flux is relayed to two acquisition systems: a sCMOS camera for high spatial resolution measurements of the emission locations in the scintillator, and fast photo-multipliers that allow time-correlation studies of fast-ion losses with high-frequency electromagnetic fluctuations. From its position with respect to the confined plasma and the fast-ion sources on TCV, FILD probes a small portion of the lost fast-ion phase space with high velocity-space and temporal resolution. Therefore, it naturally complements other available diagnostics such as neutral particle analysers, spectroscopy techniques for light emission from energetic particles following CX reactions, or neutron counters, which feature a broader, but less resolved, spatial coverage of fast-ion dynamics.The TCV-FILD design introduces some novelties for exploring new ranges of operation that may be adopted in similar systems for other Tokamaks, such as ITER. Two entrance slits can collect particles that circulate in co- and cntr-plasma current directions. This will be particularly useful when the second NBH system, injecting in the opposite toroidal direction, with particle energies that can excite strong Alfvénic modes, will be operated on TCV. A controlled pneumatic linear actuator radially positions the detector to expose the slits to the particle flux up to 9mm inward of the vessel wall. A plug-in design was conceived to facilitate diagnostic installation. The diagnostic was installed and commissioned during TCV experiments in 2020. The sensitivity of the detector to the local magnetic field line direction was investigated. The direction of the plasma current was found to select which of the two slits may be traversed by lost particles. The operational limits in discharges with NBH with total delivered energies up to 1MJ were assessed with the help of sensors monitoring the temperature of the probe head and cameras detecting visible light emissions resulting from the graphite shield heating by particle fluxes. Using FILD, fast-ion losses were detected for the first time on TCV in plasma discharges exhibiting strong MHD modes. Ejections of energetic ions were found correlated in time with Sawtooth crashes, as a sequence of individual events, and in strong phase coherence, as a continuous loss in time, with magnetic perturbations of a saturated and toroidally rotating magnetic island of a NTM. These observations, in addition to providing initial results on the relevant physics phenomena, stimulating further experiments and comparisons with theory, demonstrate the ability of TCV-FILD to provide valuable information in plasma discharges of interest for fast-ion studies. These measurements and additional information from other TCV diagnostics may now be combined to reconstruct, with tomographic inversion techniques, more of the fast-ion phase space. This will be used to identify the conditions for the excitation/suppression of magnetic instabilities, develop methods for their real-time control with heating and/or shaping actuators and investigate their dependencies on plasma parameters.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (40)
Plasma stability
The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).
Fusion par confinement magnétique
La fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Scintillateur
Un scintillateur est un matériau qui émet de la lumière à la suite de l'absorption d'un rayonnement ionisant (photon ou particule chargée). Il existe deux grandes familles de scintillateurs : les scintillateurs organiques : (anthracène, naphtalène, stilbène et terphényle) que l'on retrouve sous forme de monocristaux ou en solution liquide, les scintillateurs inorganiques utilisés sous forme de monocristaux (iodure de sodium, germanate de bismuth), ou bien sous forme de poudres incorporées à un substrat.
Afficher plus
Publications associées (103)

Overview of fast particle experiments in the first MAST Upgrade experimental campaigns

Matteo Vallar

MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfv & eacute;nic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in ...
Iop Publishing Ltd2024

Gyrokinetic turbulence modeling of a high performance scenario in JT-60SA

Stefano Coda, Stephan Brunner, Aylwin Iantchenko

Local gyrokinetic simulations are used to model turbulent transport for the first time in a representative high-performance plasma discharge projected for the new JT-60SA tokamak. The discharge features a double-null separatrix, 41 MW of combined neutral b ...
Bristol2024

Excitation of toroidal Alfvén eigenmodes with counter-current NBI in the TCV tokamak

Laurie Porte, Alexander Karpushov, Matteo Vallar, Samuele Mazzi

In TCV, unstable modes excited by resonant interaction between the shear Alfvèn waves in con- tinuum gaps and energetic particles have been observed in scenarios with Neutral Beam Injection (NBI). TCV is a middle-size device (R 0 /a = 0.88/0.25) equipped w ...
2023
Afficher plus
MOOCs associés (17)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.