Estimation of separable direct and indirect effects in continuous time
Publications associées (14)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The increasing availability of sensing techniques provides a great opportunity for engineers to design state estimation methods, which are optimal for the system under observation and the observed noise patterns. However, these patterns often do not fulfil ...
The spectral distribution plays a key role in the statistical modelling of multivariate extremes, as it defines the dependence structure of multivariate extreme-value distributions and characterizes the limiting distribution of the relative sizes of the co ...
EPFL2020
Many research questions involve time-to-event outcomes that can be prevented from occurring due to competing events. In these settings, we must be careful about the causal interpretation of classical statistical estimands. In particular, estimands on the h ...
2020
, ,
Solving a linear inverse problem may include difficulties such as the presence of outliers and a mixing matrix with a large condition number. In such cases a regularized robust estimator is needed. We propose a new tau-type regularized robust estimator tha ...
2015
The main topics of this thesis are distributed estimation and cooperative path-following in the presence of communication constraints, with applications to autonomous marine vehicles. To this end, we study algorithms that take explicitly into account the c ...
We propose an estimator for the mean of a random vector in Rd that can be computed in time O(n3.5 + n2d) for n i.i.d. samples and that has error bounds matching the sub-Gaussian case. The only assumptions we make about the data distribution are that it has ...
Every day tons of pollutants are emitted into the atmosphere all around the world. These pollutants are altering the equilibrium of our planet, causing profound changes in its climate, increasing global temperatures, and raising the sea level. The need to ...
This paper proposes a tradeoff between computational time, sample complexity, and statistical accuracy that applies to statistical estimators based on convex optimization. When we have a large amount of data, we can exploit excess samples to decrease stati ...
Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total-v ...
In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for sto ...