Magnitude (sismologie)vignette|Sismogramme enregistré par un sismographe à l'Observatoire Weston dans le Massachusetts, aux États-Unis. En sismologie, la magnitude est la représentation logarithmique du moment sismique, qui est lui-même une mesure de l'énergie libérée par un séisme déduite de l'amplitude de certaines ondes sismiques à des distances spécifiques (mesure de l'amplitude sur un sismogramme de l'onde P ou S). Plus le séisme a libéré d'énergie, plus la magnitude est élevée : un accroissement de magnitude de 1 correspond à une multiplication par 30 de l'énergie et par 10 de l'amplitude du mouvement.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Magnitude (astronomie)vignette|Sources lumineuses de différentes magnitudes. En astronomie, la magnitude est une mesure sans unité de la luminosité d'un objet céleste dans une bande de longueurs d'onde définie, souvent dans le spectre visible ou infrarouge. Une détermination imprécise mais systématique de la grandeur des objets est introduite dès le par Hipparque. L'échelle est logarithmique et définie de telle sorte que chaque pas d'une grandeur change la luminosité d'un facteur 2,5.
Magnitude absolueEn astronomie, la magnitude absolue indique la luminosité intrinsèque d'un objet céleste, au contraire de la magnitude apparente qui dépend de la distance à l'astre et de l'extinction dans la ligne de visée. Pour un objet situé à l'extérieur du Système solaire, elle est définie par la magnitude apparente qu'aurait cet astre s'il était placé à une distance de référence fixée à 10 parsecs (environ 32,6 années-lumière) en l'absence d'extinction interstellaire.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Magnitude apparentevignette|Image de la nébuleuse de la Tarentule prise par le télescope VISTA de l'ESO. La nébuleuse a une magnitude apparente de 8 et est entourée d'objets célestes aux magnitudes diverses. La magnitude apparente est une mesure de l'irradiance d'un objet céleste observé depuis la Terre. Utilisée quasi exclusivement en astronomie, la magnitude correspondait historiquement à un classement des étoiles, les plus brillantes étant de « première magnitude », les deuxièmes et troisièmes magnitudes étant plus faibles, jusqu'à la sixième magnitude, étoiles à peine visibles à l'œil nu.
Force centripèteLe terme force centripète (« qui tend à rapprocher du centre », en latin) désigne une force permettant de maintenir un objet dans une trajectoire incurvée, généralement une conique (cercle, ellipse, parabole, hyperbole). En effet, tout objet décrivant une trajectoire de ce type possède en coordonnées cylindriques une accélération radiale non nulle, appelée accélération centripète, qui est dirigée vers le centre de courbure. D'un point de vue dynamique, le principe fondamental de la dynamique (PFD) indique alors la présence d'une force radiale dirigée elle aussi vers le centre de courbure.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Magnitude de momentL'échelle de magnitude de moment est une des échelles logarithmiques qui mesurent la magnitude d'un séisme, c'est-à-dire la « taille » d'un séisme proportionnelle à l'énergie sismique dégagée. Centrée sur les basses fréquences des ondes sismiques, elle quantifie précisément l'énergie émise par le séisme. Elle ne présente pas de saturation pour les plus grands événements, dont la magnitude peut être sous-évaluée par d'autres échelles, faussant ainsi les dispositifs d'alerte rapide essentiels pour la protection des populations.