Switchable and Simultaneous Spatiotemporal Analog Computing with Computational Graphene-based Multilayers
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
As the scaling of complementary metal-oxide-semiconductor (CMOS) technology is reaching fundamental limitations, novel device concepts and materials have started to be investigated to overcome the scaling challenges for integrated circuits. Graphene has be ...
Graphene is emerging as a promising material for photonic applications owing to its unique optoelectronic properties. Graphene supports tunable, long-lived and extremely confined plasmons that have great potential for applications such as biosensing and op ...
Chinese Acad Sciences, Changchun Inst Optics Fine Mechanics And Physics2017
Electronics today permeate our life and existence. It has become nearly impossible to evade any dependence on electronic devices that surround us every day - computers, phones, televisions. But also other objects become increasingly "smart" - watches, cars ...
During the past decade, graphene --- a monolayer of carbon atoms --- has attracted enormous interest for its use in nanoelectronic device applications. The absence of bandgap, however, has stalled its use both in logic (inability to turn off) and radio fre ...
The potential applications of graphene-based materials in catalysis have been intensively studied owing to the unique 2D structure of graphene and its superior physicochemical properties. Recently, graphene-coated oxide composites have been fabricated and ...
The three-dimensional shapes of graphene sheets produced by nanoscale cut-and-join kirigami are studied by combining large-scale atomistic simulations with continuum elastic modeling. Lattice segments are selectively removed from a graphene sheet, and the ...
Two-dimensional (2D) semiconductors, consisting of single-sheets of layered transition metal dichalcogenides (TMD), are attracting enormous interest from both fundamental science and technology. Monolayer molybdenum disulfide (MoS2), a typical example from ...
Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications an ...
Nanoplasmonic structures can tightly confine light onto a material's surface to probe biomolecular interactions not easily accessed by other sensing techniques. New and exciting developments in nanofabrication processes, nano-optical trapping, graphene dev ...
We studied the nonlinear optical properties of single layer graphene using high terahertz (THz) fields. With the use of a back gate and cooling down the sample to cryogenic temperatures we are able to spectrally probe the nonlinear THz properties of intrin ...