Publication

Learning continuous-time working memory tasks with on-policy neural reinforcement learning

Davide Zambrano
2021
Article
Résumé

An animals' ability to learn how to make decisions based on sensory evidence is often well described by Reinforcement Learning (RL) frameworks. These frameworks, however, typically apply to event-based representations and lack the explicit and fine-grained notion of time needed to study psychophysically relevant measures like reaction times and psychometric curves. Here, we develop and use a biologically plausible continuous-time RL scheme of CT-AuGMEnT (Continuous-Time Attention-Gated MEmory Tagging) to study these behavioural quantities. We show how CT-AuGMEnT implements on-policy SARSA learning as a biologically plausible form of reinforcement learning with working memory units using 'attentional' feedback. We show that the CT-AuGMEnT model efficiently learns tasks in continuous time and can learn to accumulate relevant evidence through time. This allows the model to link task difficulty to psychophysical measurements such as accuracy and reaction-times. We further show how the implementation of a separate accessory network for feedback allows the model to learn continuously, also in case of significant transmission delays between the network's feedforward and feedback layers and even when the accessory network is randomly initialized. Our results demonstrate that CTAuGMEnT represents a fully time-continuous biologically plausible end-to-end RL model for learning to integrate evidence and make decisions. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.