Résumé
En mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖. Soit f une application linéaire de E dans F. Considérons . Si N < +∞, on dit que N est la norme de l'opérateur f, subordonnée à ‖ ‖ et ‖ ‖. N est fini si et seulement s'il existe des réels C tels que, pour tout v ∈ E, ‖f(v)‖ ≤ C‖v‖ (autrement dit : tels que f soit C-lipschitzienne), et dans ce cas, N est égal au plus petit d'entre ces réels C. Si N est fini alors f est N-lipschitzienne et par conséquent uniformément continue, donc continue, donc continue en 0. Réciproquement, si f est continue en 0, alors N est fini (la preuve, classique pour K = R ou C, se généralise). N est fini si et seulement si l'image par f de toute partie bornée de E (ou simplement : de la boule unité) est bornée. Ceci explique le nom d'opérateurs bornés également donné aux applications linéaires continues de E dans F. Dans l'espace des applications linéaires de E dans F, le sous-espace de celles qui sont continues peut donc être muni de la norme subordonnée. Alors, l'application bilinéaire est continue. Si E est de dimension finie, toute application linéaire de E dans F est continue : . si K = R ou C, N est aussi égal àEn dimension infinie, cette borne supérieure n'est pas toujours atteinte (cf. « Cas extrémal de l'inégalité de Hölder »). Une norme d'opérateur satisfait les axiomes d'une norme, de sorte que l'espace des opérateurs linéaires bornés de E dans F est lui-même un espace normé. Il est complet si F est complet. Deux normes distinctes interviennent ici : celle sur E et celle sur F. Même si E = F, il est possible de considérer deux normes distinctes sur ces espaces.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Aucun résultat

Personnes associées

Aucun résultat

Unités associées

Aucun résultat

Concepts associés (41)
Espace de Hilbert
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Norme d'opérateur
En mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖.
Espace réflexif
En analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .
Afficher plus
Cours associés (31)
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MATH-502: Distribution and interpolation spaces
The aim of this course is to provide a solid foundation of theory of distributions, Sobolev spaces and an introduction to the more general theory of interpolation spaces.
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
Afficher plus
Séances de cours associées (325)
Représentation du signal
Couvre la représentation des signaux et les normes de signal dans le traitement du signal.
Opération avancée TEM
Couvre les techniques d'exploitation avancées pour un Microscope Electronique de Transmission (TEM), y compris la mise en place de l'ensemble de travail et le réglage fin de l'image.
Opérateurs encombrés: Théorie et applications
Couvre les opérateurs délimités entre des espaces vectoriels normalisés, soulignant l'importance de la continuité et explorant des applications comme la transformation de Fourier.
Afficher plus
MOOCs associés

Aucun résultat