NoSQLEn informatique et en bases de données, NoSQL désigne une famille de systèmes de gestion de base de données (SGBD) qui s'écarte du paradigme classique des bases relationnelles. L'explicitation la plus populaire de l'acronyme est Not only SQL (« pas seulement SQL » en anglais) même si cette interprétation peut être discutée. La définition exacte de la famille des SGBD NoSQL reste sujette à débat. Le terme se rattache autant à des caractéristiques techniques qu'à une génération historique de SGBD qui a émergé autour des années 2010.
Modèle relationnelLe modèle relationnel est une manière de modéliser les relations existantes entre plusieurs informations, et de les ordonner entre elles. Cette modélisation qui repose sur des principes mathématiques mis en avant par E.F. Codd est souvent retranscrite physiquement (« implémentée ») dans une base de données. On appelle « relation » un ensemble d'attributs qui caractérisent une proposition ou une combinaison de propositions comme "un employé a un matricule, il a un nom, il a un employeur".
Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Théorème des graphes parfaitsEn mathématiques, et plus précisément en théorie des graphes, le théorème des graphes parfaits (parfois appelé théorème fort des graphes parfaits) est une caractérisation des graphes parfaits par certains sous-graphes , conjecturée par Claude Berge en 1961. Maria Chudnovsky, Neil Robertson, Paul Seymour, et Robin Thomas en annoncèrent la démonstration en 2002, et la publièrent en 2006. Elle valut à leurs auteurs le prix Fulkerson de 2009.
Graphe dualEn théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Langage de requêteUn langage de requête est un langage informatique utilisé pour accéder aux données d'une base de données ou d'autres systèmes d'information. Il permet d'obtenir les données vérifiant certaines conditions (on parle de critères de sélection), comme toutes les personnes qui habitent une ville donnée. Les données peuvent être triées, elles peuvent également être regroupées suivant les valeurs d'une donnée particulière (par exemple on va regrouper toutes les personnes qui habitent la même rue).
Graphe nulEn mathématiques, plus spécialement en théorie des graphes, un graphe nul désigne soit un graphe d'ordre zéro (i.e. sans sommets), soit un graphe avec sommets mais sans arêtes (on parle aussi dans ce dernier cas de graphe vide). Lorsqu'un graphe nul contient des sommets tous isolés, on le note où représente le nombre de sommets du graphe. La taille (i.e. le nombre d'arêtes ou d'arcs) d'un graphe nul est toujours zéro. L'ordre (i.e. le nombre de sommets) d'un graphe nul n'est pas nécessairement zéro.
Densité d'un grapheEn mathématiques, et plus particulièrement en théorie des graphes, on peut associer à tout graphe un entier appelé densité du graphe. Ce paramètre mesure si le graphe a beaucoup d'arêtes ou peu. Un graphe dense (dense graph) est un graphe dans lequel le nombre d'arêtes (ou d'arcs) est proche du nombre maximal, par exemple un nombre quadratique par rapport au nombre de sommets. Un graphe creux (sparse graph) a au contraire peu d'arêtes, par exemple un nombre linéaire. La distinction entre graphe creux et dense est plutôt vague et dépend du contexte.
Graphe grilleIn graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.
Arbre (théorie des graphes)En théorie des graphes, un arbre est un graphe acyclique et connexe. Sa forme évoque en effet la ramification des branches d'un arbre. Par opposition aux arbres simples, arbres binaires, ou arbres généraux de l'analyse d'algorithme ou de la combinatoire analytique, qui sont des plongements particuliers d'arbres (graphes) dans le plan, on appelle parfois les arbres (graphes) arbres de Cayley, car ils sont comptés par la formule de Cayley. Un ensemble d'arbres est appelé une forêt.