Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Intelligence artificielle généralevignette|Image générée en juin 2022 par le modèle de génération d'images DALL-E-mini, à partir de la consigne « Intelligence artificielle ». Une intelligence artificielle générale (IAG) est une intelligence artificielle capable d'effectuer ou d'apprendre pratiquement n'importe quelle tâche cognitive propre aux humains ou autres animaux. La création d'intelligences artificielles générales est un des principaux objectifs de certaines entreprises comme OpenAI, DeepMind et Anthropic.
Philosophie de l'intelligence artificielleLa philosophie de l'intelligence artificielle tente de répondre à des questions telles que : Une machine peut-elle agir intelligemment ? Peut-elle résoudre n'importe quel problème qu'une personne voudrait résoudre par la réflexion ? L'intelligence humaine et l'intelligence artificielle sont-elles fondamentalement les mêmes ? Le cerveau humain est-il analogue à un processus de traitement de l'information ? Une machine peut-elle avoir un esprit ou une conscience similaire à celle de l'humain ? Peut-elle senti
Intelligence artificielle amicaleUne intelligence artificielle amicale (aussi appelé IA amicale ou IAA) est une intelligence artificielle hypothétique qui aurait un effet positif plutôt que négatif sur l'humanité. Ce concept fait partie de l'éthique de l'intelligence artificielle et est étroitement lié au problème de l'alignement et à l'éthique des machines. Alors que l'éthique des machines se préoccupe de la façon dont un agent artificiellement intelligent doit se comporter, la recherche de l'intelligence artificielle amicale est axée sur la façon de provoquer ce comportement et de s'assurer qu'il est suffisamment maîtrisé.