Mémoire sémantiqueEn psychologie cognitive, la mémoire sémantique est le système mnésique par lequel l'individu stocke ses connaissances générales : connaissances actuelles sur le monde, définitions de concepts abstraits La mémoire sémantique est un type de mémoire déclarative. En 1972, Endel Tulving propose de distinguer la mémoire épisodique et la mémoire sémantique comme deux composantes de la mémoire déclarative. La mémoire sémantique constitue une base de connaissances, un magasin d'informations que nous possédons tous et dont une grande partie nous est accessible rapidement et sans effort.
Mémoire à long termeEn psychologie cognitive, la mémoire à long terme (MLT) est la mémoire qui permet de retenir, de manière illimitée, une information sur des périodes de temps très longues (années). La notion de MLT est un concept utilisé dans les modèles de mémoire qui distinguent plusieurs sous-systèmes en fonction du type d'information mémorisé et de la durée de rétention. La mémoire à long terme s'oppose ainsi au registre sensoriel (ou mémoire sensorielle), à la mémoire à court terme et à la mémoire de travail.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Mémoire (psychologie)thumb|350px|Les formes et fonctions de la mémoire en sciences. En psychologie, la mémoire est la faculté de l'esprit d'enregistrer, conserver et rappeler les expériences passées. Son investigation est réalisée par différentes disciplines : psychologie cognitive, neuropsychologie, et psychanalyse. thumb|Pyramide des cinq systèmes de mémoire. Le courant cognitiviste classique regroupe habituellement sous le terme de mémoire les processus dencodage, de stockage et de récupération des représentations mentales.
Long short-term memoryLong short-term memory (LSTM) network is a recurrent neural network (RNN), aimed to deal with the vanishing gradient problem present in traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps, thus "long short-term memory".
Réduction de la dimensionnalitévignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.
Implicit memoryIn psychology, implicit memory is one of the two main types of long-term human memory. It is acquired and used unconsciously, and can affect thoughts and behaviours. One of its most common forms is procedural memory, which allows people to perform certain tasks without conscious awareness of these previous experiences; for example, remembering how to tie one's shoes or ride a bicycle without consciously thinking about those activities.
Mémoire de travailLe système cognitif fonctionne en acquérant, filtrant et traitant des informations vitales, utiles, potentiellement utiles à court, moyen et long termes ; il a donc besoin de stocker (mémoriser) ces informations. Le cerveau semble pour cela disposer de systèmes différents, mais complémentaires, de mémoire à long terme et de mémoire à court terme. La notion de mémoire de travail, apparue dans les années 1970 désigne .
Fléau de la dimensionLe fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. Plusieurs domaines sont concernés et notamment l'apprentissage automatique, la fouille de données, les bases de données, l'analyse numérique ou encore l'échantillonnage.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.