Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Suprématie quantiqueLa suprématie quantique, aussi appelée avantage quantique, désigne le nombre de qubits au-delà duquel plus aucun superordinateur classique n'est capable de gérer la croissance exponentielle de la mémoire et la bande passante de communication nécessaire pour simuler son équivalent quantique. Les superordinateurs de 2017 peuvent reproduire les résultats d'un ordinateur quantique de , mais à partir de cela devient physiquement impossible. Le seuil d'environ 50 qubits correspond à la limite théorique de la suprématie quantique.
Divergence de Kullback-LeiblerEn théorie des probabilités et en théorie de l'information, la divergence de Kullback-Leibler (ou divergence K-L ou encore entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Elle doit son nom à Solomon Kullback et Richard Leibler, deux cryptanalystes américains. Selon la NSA, c'est durant les années 1950, alors qu'ils travaillaient pour cette agence, que Kullback et Leibler ont inventé cette mesure. Elle aurait d'ailleurs servi à la NSA dans son effort de cryptanalyse pour le projet Venona.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.
Neural correlates of consciousnessThe neural correlates of consciousness (NCC) refer to the relationships between mental states and neural states and constitute the minimal set of neuronal events and mechanisms sufficient for a specific conscious percept. Neuroscientists use empirical approaches to discover neural correlates of subjective phenomena; that is, neural changes which necessarily and regularly correlate with a specific experience.
Carte autoadaptativeLes cartes autoadaptatives, cartes auto-organisatrices ou cartes topologiques forment une classe de réseau de neurones artificiels fondée sur des méthodes d'apprentissage non supervisées. Elles sont souvent désignées par le terme anglais self organizing maps (SOM), ou encore cartes de Kohonen du nom du statisticien ayant développé le concept en 1984. La littérature utilise aussi les dénominations : « réseau de Kohonen », « réseau autoadaptatif » ou « réseau autoorganisé ».
Entropie croiséeEn théorie de l'information, l'entropie croisée entre deux lois de probabilité mesure le nombre de bits moyen nécessaires pour identifier un événement issu de l'« ensemble des événements » - encore appelé tribu en mathématiques - sur l'univers , si la distribution des événements est basée sur une loi de probabilité , relativement à une distribution de référence . L'entropie croisée pour deux distributions et sur le même espace probabilisé est définie de la façon suivante : où est l'entropie de , et est la divergence de Kullback-Leibler entre et .
Réduction de la dimensionnalitévignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.