**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Searches for new physics at SND@LHC

Résumé

SND@LHC is an approved experiment equipped to detect scatterings of neutrinos produced in the far-forward direction at the LHC, and aimed to measure their properties. In addition, the detector has a potential to search for new feebly interacting particles (FIPs) that may be produced in proton-proton collisions. In this paper, we discuss signatures of new physics at SND@LHC for two classes of particles: stable FIPs that may be detected via their scattering, and unstable FIPs that decay inside the detector. We estimate the sensitivity of SND@LHC to probe scatterings of leptophobic dark matter and decays of neutrino, scalar, and vector portal particles. Finally, we also compare and qualitatively analyze the potential of SND@LHC and FASER/FASER nu experiments for these searches.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (35)

Chargement

Chargement

Chargement

Concepts associés (13)

Neutrino

Le neutrino est une particule élémentaire du modèle standard de la physique des particules. Les neutrinos sont des fermions de , plus précisément des leptons. Ils sont électriquement neutres. Il en

Particule matérielle

Le terme « particule matérielle » (material particle en anglais) désigne une petite portion d'un corps, de matière solide ou fluide, constituée d'un nombre suffisamment grand de particules élémentaire

Méthode expérimentale

Les méthodes expérimentales scientifiques consistent à tester la validité d'une hypothèse, en reproduisant un phénomène (souvent en laboratoire) et en faisant varier un paramètre. Le paramètre que l

High-energy particle physics is going through a crucial moment of its history, one in which it can finally aspire to give a precise answer to some of the fundamental questions it has been conceived for. On the one side, the theoretical picture describing the elementary strong and electroweak interactions below the TeV scale, the Standard Model, has been well consolidated over the decades by the observation and the precise characterization of its constituents. On the other hand, the enormous technological potentialities nowadays available, and the skills accumulated in decades of collider experiments with increasingly high complexity, render for the first time plausible the possibility of addressing complicated and conceptually deep questions like the ones at hand. The best incarnation of this high level of sophistication is the CERN Large Hadron Collider (LHC), the most powerful experimental apparatus ever built, which is designed to shed light on the true nature of fundamental interactions at energies never attained before, and which has already started to open a new era in physics with the recent discovery of the longed-for Higgs boson, a true milestone for the human knowledge as well as one of the most important discoveries in the modern epoch. The knowledge that has been and is going to be reached in these crucial years would of course not be conceivable without a deep interplay between the theoretical and the experimental efforts. In particular, on the theoretical side, not only there are wide groups of researchers devoted to building possible extensions to the Standard Model, which draws the guidelines of current and future experiments, but also there is a vast community whose research is rather aimed at the precise predictions of all the physical observables that could be measured at colliders, and at the systematic improvement of the approximations that currently constrain such predictions. On top of representing the state-of-the-art of the human understanding of the properties that regulate elementary-particle interactions and of the formalisms that describe them, the developments of this line of research have an immediate and significant impact on experiments. Firstly, these detailed calculations are the very theoretical predictions against which experimental data are compared, so they are crucial in establishing the validity or not of the theories according to which they are performed. Secondly, the signals one wants to extract from data at modern colliders are so tiny and difficult to single out that the experimental searches themselves need be supplemented by a detailed work of theoretical modelling and simulation. In this respect, high-precision computations play an essential role in all analysis strategies devised by experimental collaborations, and in many aspects of the detector calibration. It is clear that, for theoretical computations to be useful in experimental analyses and simulations, the predictions they yield should be reliable for all possible configurations of the particles to be detected. Thus the key feature for the present theoretical collider physics is not particularly the computation of observables with high precision only in a limited region of the phase space, but the capability of combining (‘matching’) in a consistent way different approaches, each of which is reliable in a particular kinematic regime. With this perspective, matching techniques represent one of the most promising and successful theoretical frameworks currently available, and are considered as eminently valuable tools both on the theoretical and on the experimental sides. Matched computations are based on a perturbation-theory approach for the description of configurations in which the scattering products are well separated and/or highly energetic: in particular the precision currently attained for all but a few of the relevant processes within the Standard Model is the next-to-leading order (NLO) in powers of the strong quantum-chromodynamics (QCD) coupling constant αS; for the description of configurations in which the particles outgoing the collisions are close to each other and/or have low energy, it can be shown that the perturbation-theory expansion breaks down, and then a complementary method, like the parton shower Monte Carlo (PSMC), has instead to be employed. The task of matching is precisely that of giving a prediction that interpolates between the two approaches in a smooth and theoretically-consistent way. This thesis is focused on MC@NLO, a high-energy physics formalism capable of matching computations performed at the NLO in QCD to PSMC generators, in such a way as to retain the virtues of both approaches while discarding their mutual deficiencies. In particular, the thesis reports on the work successfully achieved in extending MC@NLO from its original numerical implementation, tailored on the HERWIG PSMC, to the other main PSMC programs currently employed by experimental collaborations, PYTHIA and Herwig++, confirming the advocated universality of the method. Differences in the various realizations are explained in detail both at the formal level and through the simulation of various Standard-Model reactions. Moreover we describe how the MC@NLO framework has been developed so as to render its implementation automatic with respect to the physics process one is about to simulate: beyond yielding an enormous increase in its potential for present and future collider phenomenology, and upgrading the standard of precision for high-energy computations to the NLO+PSMC level, this development allows for the first time the application of the MC@NLO formalism to a huge number of relevant and highly complicated reactions, through an implementation which is also easily usable by people well-outside the community of experts in QCD calculations. As example of this new version, called aMC@NLO, recent results are presented for complex scattering processes, involving four or five final-state particles. Finally, possible extensions of the framework to theories beyond the Standard Model, like the supersymmetric version of QCD, are briefly introduced.

Kyrylo Bondarenko, Alexey Boyarsky, Marco Drewes, Shintaro Eijima, Oleg Ruchayskiy, Lesya Shchutska, Anurag Tripathi

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 mu and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

When exposed to ionising radiation, living tissue can potentially suffer somatic and genetic damage - effects depending mainly on the radiation dose or energy absorbed, the type of radiation, and the type and mass of cells affected. It is well known that large doses of radiation lead to high damage of the cell nucleus and additional cell structures, which results in harmful somatic effects, and even rapid death of the individual exposed, while at low doses, cancer is by far the most important possible consequence. Understanding the mechanisms by which low doses of radiation cause cell damage is thus of great significance, not only from this viewpoint but also from that of practical medical physics applications such as radiotherapy treatment planning. Ionising radiation, such as electrons and positrons, begins to cause damage to the genome of a living cell by direct ionisation of atoms, thus depositing energy in the DNA double helix itself. The energy threshold for inducing strand-breaks by electrons, however, is around 7 eV, well below the energy levels required for direct ionization. The low-energy electrons that are set in motion around the tracks of energetic charged particles, for example, are responsible for a multitude of low-energy events (energy transfer of the order of 10 eV), which play a significant role in inducing molecular damage. Assessing the spatial configuration of energy transfer events and the deposited energy spectra, in regions of cellular and sub-cellular dimensions, can be aimed at via the application of appropriate Monte Carlo simulation tools. Such calculations depend primarily on an accurate knowledge of the production and subsequent slowing down of secondary electrons that form the basic structure of the charged particle track. In the above context, an important requirement is the provision of detailed quantitative information concerning the interaction cross sections of electrons over an energy range extending down to low energies, i.e. including the sub-excitation domain. In addition, developing fast particle-transport simulation algorithms to cover the entire slowing down process efficiently is a key aspect. Thus, the present doctoral research has, as global goal, the development and validation of new Monte Carlo calculational tools for electron and positron transport in biological materials, both at high and low energies. More specifically, it aims at providing (i) a comprehensive and accurate set of appropriate cross section data, and (ii) a fast and reliable algorithm for the simulation of charged particle transport. Thus, the first part of the thesis concerns the assessment, further development and validation of standard theoretical models for generating electron and positron cross sections to cover the main interactions of these particles with matter, in particular with the basic atomic components of biomaterials (water, bio-polymers, etc.). This has been done for bremsstrahlung, and both elastic and inelastic scattering, considering a wide range of atomic numbers and high up to thermal incident particle energies. In particular, the excitation cross sections for medium and low energies (down to 1 eV) have been derived by using a new formalism based on many-body field theory. The accuracy of the presently obtained data sets are assessed against other theoretical models, as also a large experimental database for each type of interaction, so that both a comprehensive coverage and adequate accuracies have been ensured for the cross section data sets generated. In the second part of the thesis, an extension of the Monte Carlo code system PENELOPE is first undertaken such that use can be made of elastic scattering differential cross sections which have been made available in numerical form. Thereby, new computational routines (incorporated into the new code PENELAST) prepare the cross sections, needed for a given energy and scattering angle, by applying a fast and accurate sampling technique to a provided data set. The present development will allow various electron and positron cross section data libraries, appropriately formatted, to be used with PENELOPE for benchmarking purposes. The development of a high calculation-speed (Class I) Monte Carlo tool for charged particle transport in biological materials has then been addressed. Thereby, a numerical algorithm for calculating the multiple-scattering angular distributions of high energy electrons and positrons is developed, based on the multiple-scattering theory of Lewis which accounts for energy losses within the continuous slowing down approximation. Partial-wave elastic scattering differential cross sections made available in numerical form, as indicated above, are used for the calculations, the inelastic scattering differential cross sections being obtained from the Sternheimer-Liljequist generalized oscillator strength model implemented in PENELOPE. The new code LEWIS has been used to calculate multiple-scattering angular distributions for given path lengths and can be readily adopted for Class I Monte Carlo simulations. The simultaneous generation of a large number of Legendre expansion coefficients is rendered possible, both rapidly and accurately. Results from LEWIS have been found to be in satisfactory agreement, both with detailed simulations carried out using PENELAST and with various sets of experimental data for high to medium energy electrons. In brief, the present research represents a significant improvement in the quality of Monte Carlo modelling of charged particle slowing down processes, thus contributing to understanding the. role of low-energy secondary electrons in radiation protection studies. It will also allow the further development of a complete Class I Monte Carlo code, which can then be reliably used in practical applications such as radiation treatment planning.