Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hundred mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}m diameter are used, either they are grouped together and coupled with a single SiPM, losing spatial resolution, or a very large number of electronic channels is required. In this article we propose and provide a first demonstration of a novel configuration which allows each individual scintillating fibre to be read out regardless of the size of its diameter, by imaging them with Single-Photon Avalanche Diode (SPAD) array sensors. Differently from SiPMs, SPAD array sensors provide single-photon detection with single-pixel spatial resolution. In addition, O(us) or faster coincidence of detected photons allows to obtain noise-free images. Such a concept can be particularly advantageous if adopted as a neutrino active target, where scintillating fibres alternated along orthogonal directions can provide isotropic, high-resolution tracking in a dense material and reconstruct the kinematics of low-momentum protons (down to 150 MeV/c), crucial for an accurate characterisation of the neutrino-nucleus cross section. In this work the tracking capabilities of a bundle of scintillating fibres coupled to SwissSPAD2 is demonstrated. The impact of such detector configuration in GeV-neutrino experiments is studied with simulations and reported. Finally, future plans, including the development of a new SPAD array sensor optimised for neutrino detection, are discussed.
Lesya Shchutska, Olivier Schneider, Aurelio Bay, Guido Haefeli, Elena Graverini, Alexey Boyarsky, Ettore Zaffaroni, Sun Hee Kim, Federico Leo Redi, Evgenii Shmanin, Nikolaos Charitonidis, Carina Trippl, Serhii Cholak, Jean-Loup Tastet, Ana Bárbara Rodrigues Cavalcante, Anton Petrov, Andrea Montanari
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer