Modèle du solide indéformableLe modèle du solide indéformable est un modèle de solide fréquemment utilisé en mécanique des systèmes de points matériels. Il s'agit d'une idéalisation de la notion usuelle de corps (à l'état) solide, considéré comme absolument rigide, et négligeant toute déformation. Le solide indéformable est un modèle utilisé en mécanique pour décrire le comportement d'un corps (objet, pièce). Comme son nom l'indique, on considère qu'au cours du temps la distance entre deux points donnés ne varie pas.
Rigid body dynamicsIn the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
Rotateur rigideLe rotateur rigide est un modèle mécanique utilisé pour expliquer les systèmes en rotation (et particulièrement en mécanique quantique). Un rotateur rigide quelconque est un objet tridimensionnel rigide, comme une toupie. Afin d'orienter un tel objet dans l'espace, trois angles sont nécessaires. Le rotateur linéaire, objet bidimensionnel, est un cas particulier de rotateur rigide en trois dimensions ne nécessitant que deux angles pour décrire son orientation. On peut citer comme exemple de rotateur linéaire une molécule diatomique.
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
P-completEn théorie de la complexité computationnelle, un problème de décision est P-complet (c.-à-d. complet pour la classe de complexité P des problèmes en temps polynomial) s'il est dans P et tout problème dans P peut y être réduit par une réduction en espace logarithmique (d'autres réductions sont aussi utilisées, comme NC). La notion de problème de décision P-complet est utile pour déterminer : quels problèmes sont difficiles à paralléliser efficacement (si on utilise des réductions NC), quels problèmes sont difficiles à résoudre dans un espace limité (si on utilise des réductions en espace logarithmique).
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Euler's equations (rigid body dynamics)In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is where M is the applied torques and I is the inertia matrix. The vector is the angular acceleration. Again, note that all quantities are defined in the rotating reference frame.
Mouvement à la PoinsotEn mécanique du solide, on appelle mouvement à la Poinsot, le mouvement d'un solide autour de son centre de gravité G, le moment des forces extérieures par rapport à G étant nul. Ce mouvement est caractérisé par la conservation du moment cinétique et de l'énergie cinétique de rotation , demi-produit scalaire du moment cinétique et du vecteur de rotation instantanée. Il existe 3 cas : le solide est à symétrie sphérique. Ses moments principaux d'inertie sont égaux : A = B = C.
CinématiqueEn physique, la cinématique (du grec kinêma, le mouvement) est l'étude des mouvements indépendamment des causes qui les produisent, ou, plus exactement, l'étude de tous les mouvements possibles. À côté de la notion d'espace qui est l'objet de la géométrie, la cinématique introduit la notion de temps. À ne pas confondre avec la , un terme plus général qui concerne la vitesse et les mécanismes d'une grande variété de processus ; en mécanique, cinétique est utilisé comme adjectif pour qualifier deux grandeurs impliquant aussi la masse : le moment cinétique et l'énergie cinétique.
Problème à N corpsLe problème à N corps est un problème de mécanique céleste consistant à déterminer les trajectoires d'un ensemble de N corps s'attirant mutuellement ; plus précisément, il s'agit de résoudre les équations du mouvement de Newton pour N corps interagissant gravitationnellement, connaissant leurs masses ainsi que leurs positions et vitesses initiales. Le cas (problème à deux corps) a été résolu par Newton, mais dès (problème à trois corps) apparaissent des solutions essentiellement impossibles à expliciter, car sensibles aux conditions initiales.