Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
An animals' ability to learn how to make decisions based on sensory evidence is often well described by Reinforcement Learning (RL) frameworks. These frameworks, however, typically apply to event-based representations and lack the explicit and fine-grained ...
The recent generations of massive spectroscopic surveys aim at the ray collection from a multitude of cosmological targets in the course of observations. For this purpose, astrobots are used to change the configuration of optical fibers from one observatio ...
The COVID-19 pandemic has demonstrated the importance and value of multi-period asset allocation strategies responding to rapid changes in market behavior. In this article, we formulate and solve a multi-stage stochastic optimization problem, choosing the ...
Effective caching is crucial for performance of modern-day computing systems. A key optimization problem arising in caching – which item to evict to make room for a new item – cannot be optimally solved without knowing the future. There are many classical ...
We propose to leverage Transformer architectures for non-autoregressive human motion prediction. Our approach decodes elements in parallel from a query sequence, instead of conditioning on previous predictions such as in state-of-the-art RNN-based approach ...
Human pose forecasting involves complex spatiotemporal interactions between body parts (e.g., arms, legs, spine). State-of-the-art approaches use Long Short-Term Memories (LSTMs) or Variational AutoEncoders (VAEs) to solve the problem. Yet, they do not eff ...
Our work addresses long-term motion context issues for predicting future frames. To predict the future precisely, it is required to capture which long-term motion context (e.g., walking or running) the input motion (e.g., leg movement) belongs to. The bott ...
Visual salient object detection (SOD) aims at finding the salient object(s) that attract human attention, while camouflaged object detection (COD) on the contrary intends to discover the camouflaged object(s) that hidden in the surrounding. In this paper, ...
We present DepthInSpace, a self-supervised deep-learning method for depth estimation using a structured-light camera. The design of this method is motivated by the commercial use case of embedded depth sensors in nowadays smartphones. We first propose to u ...
With improved insulation of building envelopes and the use of low-temperature space heating systems, the share of energy use for domestic hot water (DHW) production in buildings has increased significantly, and nearly become the most energy-expensive servi ...