Publication

Trainable Preprocessing for Reduced Precision Neural Networks

Gabor Andras Csordas
2021
Article de conférence
Résumé

Applications of neural networks are emerging in many fields and are frequently implemented in embedded environment, introducing power, throughput and latency constraints next to accuracy. Although practical computer vision solutions always involve some kind of preprocessing, most research focuses on the network itself. As a result, the preprocessing remains optimized for the human perception and is not tuned to neural networks. We propose the optimization of preprocesing along with the network using backpropagation and gradient descent. This open up the accuracy versus implementation cost design space towards more cost-efficient implementations by exploiting reduced precision input. In particular, we evaluate the effect of two preprocessing techniques: color conversion and dithering, using CIFAR10 and ImageNet datasets with different networks.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.