Écart typethumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.
Valeur absolue des écartsEn statistique, la déviation absolue moyenne (ou simplement déviation moyenne) d'un ensemble est la moyenne (ou valeur prévue) des déviations absolues par rapport à un point central d'une série statistique. C'est une statistique sommaire de dispersion ou de variabilité statistique, et elle peut être associée à toute mesure à une tendance centrale (moyenne, médiane, mode...). La déviation absolue d'un élément a d'un ensemble de données x par rapport à un réel est a – x.
Deviation (statistics)In mathematics and statistics, deviation is a measure of difference between the observed value of a variable and some other value, often that variable's mean. The sign of the deviation reports the direction of that difference (the deviation is positive when the observed value exceeds the reference value). The magnitude of the value indicates the size of the difference. Errors and residuals A deviation that is a difference between an observed value and the true value of a quantity of interest (where true value denotes the Expected Value, such as the population mean) is an error.
Median absolute deviationIn statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample. For a univariate data set X1, X2, ..., Xn, the MAD is defined as the median of the absolute deviations from the data's median : that is, starting with the residuals (deviations) from the data's median, the MAD is the median of their absolute values. Consider the data (1, 1, 2, 2, 4, 6, 9).
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Écart type géométriqueDans les domaines des statistiques et des probabilités, l'écart type géométrique décrit la dispersion d'un ensemble de nombres autour de la moyenne géométrique. Si la moyenne géométrique d'un ensemble de nombres {A1, A2, ..., An} est notée μg, alors l'écart type géométrique est défini par : où on a et est donc la moyenne arithmétique de , par conséquent l'écart type de cet ensemble de nombres est : d'où L'écart type géométrique est relié à la loi log-normale.
Unbiased estimation of standard deviationIn statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value. Except in some important situations, outlined later, the task has little relevance to applications of statistics since its need is avoided by standard procedures, such as the use of significance tests and confidence intervals, or by using Bayesian analysis.
Ultra haute fréquenceLa bande des ultra hautes fréquences (ultra high frequency/UHF) est la bande du spectre radioélectrique comprise entre et , soit les longueurs d'onde de à . La bande UHF est le terme officiel désignant les fréquences radio de 300 à , mais la partie haute appartient plus généralement au domaine technique des « hyperfréquences » qui s'étend de () à . On y trouve donc des appellations anciennes et largement utilisées comme la Bande L et la Bande S.
Coefficient de variationvignette|CV (coefficient de variation) = l'écart-type sur la moyenne En théorie des probabilités et statistiques, le coefficient de variation également nommé écart type relatif, est une mesure de dispersion relative. Le RSD (relative standard deviation en anglais) est défini comme la valeur absolue du coefficient de variation et est souvent exprimé en pourcentage. Le coefficient de variation est défini comme le rapport entre l'écart-type et la moyenne : L'écart-type seul ne permet le plus souvent pas de juger de la dispersion des valeurs autour de la moyenne.