Application transposéeEn mathématiques et plus précisément en algèbre linéaire, l'application transposée d'une application linéaire entre deux espaces vectoriels est l'application entre leurs duals définie par : ou encore, si est le crochet de dualité de : La forme linéaire résultante est nommée application transposée de le long de . Cette définition se généralise à des K-modules à droite sur un anneau (non nécessairement commutatif), en se souvenant que le dual d'un K-module à droite est un K-module à gauche, ou encore un module à droite sur l'anneau opposé K.
Fonction propreEn théorie spectrale, une fonction propre f d'un opérateur linéaire sur un espace fonctionnel est un vecteur propre de l'opérateur linéaire. En d’autres termes, une fonction propre d'un opérateur linéaire, , défini sur un certain espace de fonction, est toute fonction f non identiquement nulle sur cet espace qui, lorsqu’elle se voit appliquer cet opérateur en ressort exactement pareille à elle-même, à un facteur d'échelle multiplicatif près. Cette fonction satisfait donc : pour un scalaire λ, la valeur propre associée à f.
Application momentEn géométrie symplectique, aux actions hamiltoniennes d'un groupe de Lie sur une variété symplectique est associée une application G-équivariante , appelée l'application moment. En un certain sens, elle généralise le moment rencontré en mécanique classique. L'application moment est définie par : où est le champ de vecteurs correspondant à l'action infinitésimale de . Action de groupe Action hamiltonienne Symplectomorphisme Difféomorphisme hamiltonien Contribution à l'étude de l'application moment, EL AZIRI Abdelhamid ; MARLE Charles-Miche Convexity properties of hamiltonian group actions, Principal Guillemin, Victor W.
SymplectomorphismeEn géométrie symplectique, un symplectomorphisme est un isomorphisme de variétés symplectiques. Soient et deux variétés symplectiques. Une application différentiable est appelée morphisme symplectique lorsque, pour tout , la différentielle est une isométrie linéaire entre espaces vectoriels symplectiques. Autrement dit : Si , comme est non dégénérée, les différentielles sont des isomorphismes linéaires, et de fait, par le théorème d'inversion locale, est un difféomorphisme local.