Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
ConnectomiqueLa connectomique est l'établissement et l'étude du connectome, c'est-à-dire de l'ensemble des connexions neuronales du cerveau. La connectomique est la production et l'étude des connectomes : des cartes complètes des connexions au sein du système nerveux d'un organisme. Plus généralement, on peut considérer qu'il s'agit de l'étude des schémas de câblage neuronaux, en mettant l'accent sur la façon dont la connectivité structurelle, les synapses individuelles, la morphologie et l'ultrastructure cellulaires contribuent à la constitution d'un réseau.
Bootstrap aggregatingLe bootstrap aggregating, également appelé bagging (de bootstrap aggregating), est un meta-algorithme d'apprentissage ensembliste conçu pour améliorer la stabilité et la précision des algorithmes d'apprentissage automatique. Il réduit la variance et permet d'éviter le surapprentissage. Bien qu'il soit généralement appliqué aux méthodes d'arbres de décision, il peut être utilisé avec n'importe quel type de méthode. Le bootstrap aggregating est un cas particulier de l'approche d'apprentissage ensembliste.
ImageNetImageNet est une base de données d'images annotées produit par l'organisation du même nom, à destination des travaux de recherche en vision par ordinateur. En 2016, plus de dix millions d'URLs ont été annotées à la main pour indiquer quels objets sont représentés dans l'image ; plus d'un million d'images bénéficient en plus de boîtes englobantes autour des objets. La base de données d'annotations sur des URL d'images tierces est disponible librement, ImageNet ne possédant cependant pas les images elles-mêmes.
Data wranglingData wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data. Data analysts typically spend the majority of their time in the process of data wrangling compared to the actual analysis of the data.
Cryomicroscopie électroniquevignette|Un microscope électronique en transmission (2003). La cryomicroscopie électronique (cryo-ME) correspond à une technique particulière de préparation d’échantillons biologiques utilisée en microscopie électronique en transmission. Développée au début des années 1980, cette technique permet de réduire les dommages d’irradiation causés par le faisceau d’électrons. Elle permet également de préserver la morphologie et la structure des échantillons.
Volumetric displayA volumetric display device is a display device that forms a visual representation of an object in three physical dimensions, as opposed to the planar image of traditional screens that simulate depth through a number of different visual effects. One definition offered by pioneers in the field is that volumetric displays create 3D imagery via the emission, scattering, or relaying of illumination from well-defined regions in (x,y,z) space.
Statistique exhaustiveLes statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité. Soit un vecteur d'observation de taille , dont les composantes sont indépendantes et identiquement distribués (iid).
Reconnaissance gestuelleGesture recognition is a topic in computer science and language technology with the goal of interpreting human gestures via mathematical algorithms. It is a subdiscipline of computer vision. Gestures can originate from any bodily motion or state, but commonly originate from the face or hand. Focuses in the field include emotion recognition from face and hand gesture recognition since they are all expressions. Users can make simple gestures to control or interact with devices without physically touching them.