Double bubble theoremIn the mathematical theory of minimal surfaces, the double bubble theorem states that the shape that encloses and separates two given volumes and has the minimum possible surface area is a standard double bubble: three spherical surfaces meeting at angles of 120° on a common circle. The double bubble theorem was formulated and thought to be true in the 19th century, and became a "serious focus of research" by 1989, but was not proven until 2002. The proof combines multiple ingredients.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Nombre de contactEn géométrie, le nombre de contact ou nombre de Newton ou nombre de baisers (de l'anglais kissing number) d'un espace est défini comme le plus grand nombre de boules identiques qui peuvent être placées dans cet espace sans qu'elles ne se chevauchent et telles que chacune touche une boule identique commune. Le terme nombre de Newton renvoie à Isaac Newton, l'auteur du problème en trois dimensions. Le problème du nombre de contact consiste à déterminer le plus grand nombre de contact pour des sphères n-dimensionnelles dans l'espace euclidien de dimension n + 1.
Semi-continuitéEn analyse mathématique, la semi-continuité est une propriété des fonctions définies sur un espace topologique et à valeurs dans la droite réelle achevée = R ∪ {–∞, +∞} ; il s'agit d'une forme faible de la continuité. Intuitivement, une telle fonction f est dite semi-continue supérieurement en x si, lorsque x est proche de x, f(x) est soit proche de f(x), soit inférieur à f(x). Pour définir semi-continue inférieurement, on remplace « inférieur à » par « supérieur à » dans la définition précédente.
Beta PictorisBeta Pictoris (β Pic / β Pictoris) est la deuxième étoile la plus brillante de la constellation du Peintre. Elle est située à 63,4 années-lumière de notre Système solaire et est 1,75 fois plus massive et 8,7 plus lumineuse que notre Soleil. Le système Beta Pictoris est très jeune, âgé seulement de 8 à 20 millions d'années bien qu'il soit déjà dans la séquence principale de son évolution stellaire. Beta Pictoris est l'étoile principale du groupe mouvant de Beta Pictoris, une association stellaire de jeunes étoiles ayant le même âge et partageant un même mouvement à travers l'espace.