Weak supervisionWeak supervision, also called semi-supervised learning, is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data (exclusively used in more expensive and time-consuming supervised learning paradigm), followed by a large amount of unlabeled data (used exclusively in unsupervised learning paradigm).
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Mécanisme réactionnelEn chimie, un mécanisme réactionnel est l'enchainement d'étapes, de réactions élémentaires, par lequel un changement chimique a lieu. Bien que, pour la plupart des réactions, seul le bilan global (transformation des réactifs en produits) soit observable directement, des expériences permettent de déterminer la séquence possible des étapes du mécanisme réactionnel associé. Un mécanisme réactionnel décrit en détail ce qui se passe à chaque étape d'une transformation chimique.
Reaction rateThe reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Analyse sémantique latenteL’analyse sémantique latente (LSA, de l'anglais : Latent semantic analysis) ou indexation sémantique latente (ou LSI, de l'anglais : Latent semantic indexation) est un procédé de traitement des langues naturelles, dans le cadre de la sémantique vectorielle. La LSA fut brevetée en 1988 et publiée en 1990. Elle permet d'établir des relations entre un ensemble de documents et les termes qu'ils contiennent, en construisant des « concepts » liés aux documents et aux termes.
Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Équation de continuitévignette|mécanique des fluides En mécanique des fluides, le principe de conservation de la masse peut être décrit par l'équation de continuité sous plusieurs formes différentes : locale conservative (dérivée en temps normale), locale non conservative (la dérivée en temps suit la particule dans son mouvement), ou intégrale. Suivant les problèmes posés, c'est l'une ou l'autre de ces équations qui pourra être retenue, toutes étant équivalentes.
Mean shiftMean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. Application domains include cluster analysis in computer vision and . The mean shift procedure is usually credited to work by Fukunaga and Hostetler in 1975. It is, however, reminiscent of earlier work by Schnell in 1964. Mean shift is a procedure for locating the maxima—the modes—of a density function given discrete data sampled from that function.