Publication

Large Anomalous Nernst Angle in Co2MnGa Thin Film

Résumé

The new trends for anomalous Nernst effect (ANE)-based thermoelectric devices require materials with large ANE values to realize the scalable generation of voltage. Recently, very large ANE values have been observed in single crystals of some novel magnetic materials. However, to allow work to proceed on developing ANE-based devices, these materials need to be produced in thin-film form, and to date, thin films have not achieved the same large ANE values as bulk materials. In this letter, we report a large ANE in a 50 nm thick film of ferromagnetic Heusler alloy Co2MnGa, matching the values achieved in the bulk material. By systematically mapping the thermoelectric transport properties, we extracted an anomalous Nernst angle in the range of 11.5% -14.2% at 300 K.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Thermoélectricité
La thermoélectricité est l'électricité générée par l'effet thermoélectrique, un phénomène physique présent dans certains matériaux, qui lie les flux de chaleur qui les traversent aux courants électriques qui les parcourent. Cet effet est à la base d'applications, dont très majoritairement la thermométrie, puis la réfrigération ( module Peltier) et enfin, très marginalement, la génération d'électricité (par « thermopile » ou « calopile »). Elle a été découverte puis comprise au cours du grâce aux travaux de Seebeck, Peltier ou encore Lord Kelvin.
Générateur thermoélectrique
Un générateur thermoélectrique (GTE ou ) est une plaque comportant des semi-conducteurs et utilisant l'effet Seebeck pour produire de l'électricité en tirant parti de la différence de températures entre chaque face. Ce type de module est également utilisé pour le refroidissement thermoélectrique. On appelle l'effet utilisé, l'« effet Peltier–Seebeck », car il dérive des travaux du physicien français Jean-Charles Peltier et du physicien allemand Thomas Johann Seebeck.
Aimant
Un aimant permanent, ou simplement aimant dans le langage courant, est un objet fabriqué dans un matériau magnétique dur, c’est-à-dire dont l'aimantation rémanente et le champ coercitif sont grands (voir ci-dessous). Cela lui donne des propriétés particulières liées à l'existence du champ magnétique, comme celle d'exercer une force d'attraction sur tout matériau ferromagnétique. Le mot aimant est, comme le mot diamant, dérivé du grec ancien ἀδάμας, adámas (« fer particulièrement dur ou diamant »), apparenté à l'adjectif ἀδάμαστος, adámastos, (« indomptable »), en raison de la dureté de la pierre d'aimant.
Afficher plus
Publications associées (35)

Murunskite - a new class of functional material

Davor Tolj

The subject of the present work is discovery and in-depth characterization of a new class of functional materials. Tuning of the bond polarity and orbital occupation with a goal of establishing balance between localization and delocalization of electrons - ...
EPFL2023

Disorder-induced electronic, magnetic, and optoelectronic properties of two-dimensional materials

Cheol Yeon Cheon

Technological advancement has been in cadence with material development by improving the purity of single crystals and, at the same time, controlling their imperfections. These capabilities have been especially vital for developing new technolo-gies based ...
EPFL2022

Atomic layer deposition of Ni and Ni80Fe20 for tubular spin-wave nanocavities

Maria Carmen Giordano

Magnetic thin films and magnetic nanostructures have become essential components of modern technological applications. Modern branches of magnetisms focus on spin-charge coupling (spintronics) and the collective excitation of spin waves in magnetically ord ...
EPFL2021
Afficher plus
MOOCs associés (25)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.