Algorithms for Efficient and Robust Distributed Deep Learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
While the introduction of practical deep learning has driven progress across scientific fields, recent research highlighted that the requirement of deep learning for ever-increasing computational resources and data has potential negative impacts on the sci ...
We consider model-based multi-agent reinforcement learning, where the environment transition model is unknown and can only be learned via expensive interactions with the environment. We propose H-MARL (Hallucinated Multi-Agent Reinforcement Learning), a no ...
Accurate segmentation of pulmonary airways and vessels is crucial for the diagnosis and treatment of pulmonary diseases. However, current deep learning approaches suffer from disconnectivity issues that hinder their clinical usefulness. To address this cha ...
Limited availability of representative time-to-failure (TTF) trajectories either limits the performance of deep learning (DL)-based approaches on remaining useful life (RUL) prediction in practice or even precludes their application. Generating synthetic d ...
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Lensless imaging provides a large panel of benefits : cost, size, weight, etc., that are crucial for wearable application, IoT or medical devices. Such setups require the design of reconstruction algorithms to recover the image from the captured measuremen ...
Limited availability of representative time-to-failure (TTF) trajectories either limits the performance of deep learning (DL)-based approaches on remaining useful life (RUL) prediction in practice or even precludes their application. Generating synthetic d ...
As modern machine learning continues to achieve unprecedented benchmarks, the resource demands to train these advanced models grow drastically. This has led to a paradigm shift towards distributed training. However, the presence of adversariesâwhether ma ...
Polynomial neural networks (PNNs) have been recently shown to be particularly effective at image generation and face recognition, where high-frequency information is critical. Previous studies have revealed that neural networks demonstrate a spectral bias ...
The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the characte ...