Neural decodingNeural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Voxel-based morphometryVoxel-based morphometry is a computational approach to neuroanatomy that measures differences in local concentrations of brain tissue, through a voxel-wise comparison of multiple brain images. In traditional morphometry, volume of the whole brain or its subparts is measured by drawing regions of interest (ROIs) on images from brain scanning and calculating the volume enclosed. However, this is time consuming and can only provide measures of rather large areas. Smaller differences in volume may be overlooked.
Demi-plan de PoincaréLe demi-plan de Poincaré est un sous-ensemble des nombres complexes. Il a permis au mathématicien français Henri Poincaré d'éclairer les travaux du Russe Nikolaï Lobatchevski. Le demi-plan de Poincaré est formé par les nombres complexes de partie imaginaire strictement positive. Il fournit un exemple de géométrie non euclidienne, plus précisément de géométrie hyperbolique. On considère le demi-plan supérieur : On munit le demi-plan supérieur de la métrique : Cette métrique possède une courbure scalaire constante négative : On se ramène usuellement au cas d'une courbure unité, c’est-à-dire qu'on choisit : a = 1 pour simplifier les équations.
Interférométrie des taveluresL'interférométrie des tavelures est une technique de utilisée en astronomie qui permet d'augmenter de façon radicale le pouvoir de résolution d'un télescope au sol. Mise au point en 1970 par l'astronome français Antoine Labeyrie, son utilisation a mené à nombre de découvertes, dont les diamètres d'étoiles, la lune de Pluton, Charon, la qualité binaire de certaines étoiles autrement perçues comme simples, et la détection de taches solaires à la surface d'étoiles géantes comme Bételgeuse.
Théorème d'Euler (courbure des surfaces)En géométrie différentielle, le théorème d'Euler relatif aux rayons de courbure des courbes tracées sur une surface S deux fois différentiable fournit la valeur des courbures des courbes de cette surface passant par un même point M, sous la forme :. où : est la courbure normale d'une courbe tracée sur la surface S, et admettant X comme vecteur tangent au point M.
Robustesse d'un mot de passeLa robustesse d'un mot de passe est la mesure de la capacité d'un mot de passe à résister à son cassage, que ce soit par des moyens permettant de le deviner ou par une attaque par force brute. On mesure la robustesse d'un mot de passe en estimant le nombre de tentatives nécessaires à un attaquant pour le casser.
Spirale logarithmiqueUne spirale logarithmique est une courbe dont l'équation polaire est de la forme : où a et b sont des réels strictement positifs (b différent de 1) et la fonction exponentielle de base b. Cette courbe étudiée au a suscité l'admiration de Jacques Bernoulli pour ses propriétés d'invariance. On la trouve dans la nature, par exemple dans la croissance de coquillages ou pour la disposition des graines de tournesol. Le nom de spirale logarithmique lui est donné par Pierre Varignon.