Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present a general framework for portfolio risk management in discrete time, based on a replicating martingale. This martingale is learned from a finite sample in a supervised setting. Our method learns the features necessary for an effective low-dimensional representation, overcoming the curse of dimensionality common to function approximation in high-dimensional spaces, and applies for a wide range of model distributions. We show numerical results based on polynomial and neural network bases applied to high-dimensional Gaussian models. In these examples, both bases offer superior results to naive Monte Carlo methods and regress-now least-squares Monte Carlo (LSMC).
Alfio Quarteroni, Francesco Regazzoni, Stefano Pagani